1887

Abstract

A yellow Gram-stain-positive, non-motile, non-endospore -forming, spherical endophytic actinobacterium, designated strain AE-6, was isolated from the inner fleshy leaf tissues of (Aloe vera) collected from Pune, Maharashtra, India. Strain AE-6 grew at high salt concentrations [10 % (w/v) NaCl], temperatures of 15–41 °C and a pH range of 5–12. It showed highest (99.7 %) 16S rRNA gene sequence similarity with YIM 65004 followed by NCTC 2665 (99.6 %) and YIM 56238 (99.0 %). Ribosomal protein profiling by MALDI-TOF/MS also showed it was most closely related to YIM 65004 and NCTC 2665. Like other members of the genus , strain AE-6 had a high content of branched chain fatty acids (iso-C15 : 0 and anteiso-C15 : 0). MK-8(H) and MK-8 were the predominant isoprenoid quinones. Cell wall analysis showed an ‘A2 -Lys-peptide subunit’ type of peptidoglycan and ribose to be the major cell wall sugar. The DNA G+C content was 70 mol%. Results of DNA–DNA hybridization of AE-6 with its closest relatives from the genus produced a value of less than 70%. Based on the results of this study, strain AE-6 could be clearly differentiated from other members of the genus . We propose that it represents a novel species of the genus and suggest the name sp. nov., with strain AE-6 ( = MCC 2184 = DSM 27472) as the type strain of the species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063339-0
2014-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3427.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063339-0&mimeType=html&fmt=ahah

References

  1. Adams P. D., Kloepper J. W.. ( 1996;). Seed-borne bacterial endophytcs in different cotton cultivars. . Phytopathology 86:, S97.
    [Google Scholar]
  2. Chen H. H., Zhao G. Z., Park D. J., Zhang Y. Q., Xu L. H., Lee J. C., Kim C. J., Li W. J.. ( 2009;). Micrococcus endophyticus sp. nov., isolated from surface-sterilized Aquilaria sinensis roots. . Int J Syst Evol Microbiol 59:, 1070–1075. [CrossRef][PubMed]
    [Google Scholar]
  3. Chittpurna, Singh P. K., Verma D., Pinnaka A. K., Mayilraj S., Korpole S.. ( 2011;). Micrococcus lactis sp. nov., isolated from dairy industry waste. . Int J Syst Evol Microbiol 61:, 2832–2836. [CrossRef][PubMed]
    [Google Scholar]
  4. Cohn F.. ( 1872;). Untersuchungen über Bakterien. . Beitr Biol Pflanz 1:, 127–±244.
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specified tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Gayathri S., Saravanan D., Radhakrishnan M., Balagurunathan R., Kathiresan K.. ( 2010;). Bioprospecting potential of fast growing endophytic bacteria from leaves of mangrove and salt-marsh plant species. . Ind J Biotechnol 9:, 397–402.
    [Google Scholar]
  10. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  11. James E. K., Gyaneshwar P., Mathan N., Barraquio W. L., Reddy P. M., Iannetta P. P., Olivares F. L., Ladha J. K.. ( 2002;). Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. . Mol Plant Microbe Interact 15:, 894–906. [CrossRef][PubMed]
    [Google Scholar]
  12. Johnston-Monje D., Raizada M. N.. ( 2011;). Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. . PLoS ONE 6:, e20396. [CrossRef][PubMed]
    [Google Scholar]
  13. Kaga H., Mano H., Tanaka F., Watanabe A., Kaneko S., Morisaki H.. ( 2009;). Rice seeds as sources of endophytic bacteria. . Microbes Environ 24:, 154–162. [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  15. Kloos W. E., Tornabene T. G., Schleifer K. H.. ( 1974;). Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. . Int J Syst Bacteriol 24:, 79–101. [CrossRef]
    [Google Scholar]
  16. Liu H., Xu Y., Ma Y., Zhou P.. ( 2000;). Characterization of Micrococcus antarcticus sp. nov., a psychrophilic bacterium from Antarctica. . Int J Syst Evol Microbiol 50:, 715–719. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu X. Y., Wang B. J., Jiang C. Y., Liu S. J.. ( 2007;). Micrococcus flavus sp. nov., isolated from activated sludge in a bioreactor. . Int J Syst Evol Microbiol 57:, 66–69. [CrossRef][PubMed]
    [Google Scholar]
  18. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2011;). Evaluation of a new fluorimetric DNA-DNA hybridization method. . Can J Microbiol 57:, 250–255. [CrossRef][PubMed]
    [Google Scholar]
  19. Marmur J.. ( 1961;). A procedure for isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  20. Mcinroy J. A., Kloepper J. W.. ( 1995;). Survey of indigenous bacterial endophytes from cotton and sweet corn. . Plant Soil 173:, 337–342. [CrossRef]
    [Google Scholar]
  21. Prakash O., Lal R.. ( 2006;). Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov.. Int J Syst Evol Microbiol 56:, 2147–2152. [CrossRef][PubMed]
    [Google Scholar]
  22. Prakash O., Green S. J., Jasrotia P., Overholt W. A., Canion A., Watson D. B., Brooks S. C., Kostka J. E.. ( 2012;). Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer. . Int J Syst Evol Microbiol 62:, 2457–2462. [CrossRef][PubMed]
    [Google Scholar]
  23. Prakash O., Munot H., Nimonkar Y., Sharma M., Kumbhare S., Shouche Y. S.. ( 2014;). Description of Pelistega indica sp. nov., isolated from human gut. . Int J Syst Evol Microbiol 64:, 1389–1394. [CrossRef][PubMed]
    [Google Scholar]
  24. Rieser G., Scherer S., Wenning M.. ( 2013;). Micrococcus cohnii sp. nov., isolated from the air in a medical practice. . Int J Syst Evol Microbiol 63:, 80–85. [CrossRef][PubMed]
    [Google Scholar]
  25. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  27. Sessitsch A., Reiter B., Pfeifer U., Wilhelm E.. ( 2002;). Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. . FEMS Microbiol Ecol 39:, 23–32. [CrossRef][PubMed]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiology Today 33:, 152–155.
    [Google Scholar]
  30. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic Note: A Place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bact 44:, 846–849. [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. ( 1995;). Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. . Int J Syst Bacteriol 45:, 682–692. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  35. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi.. FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  36. Verma S., Varma A., Rexer K. H., Hassel A., Kost G., Sarbhoy A., Bisen P., Bütehorn B., Franken P.. ( 1998;). Piriformospora indica, gen. sp. nov., a new root-colonizing fungus. . Mycologia 90:, 896–903. [CrossRef]
    [Google Scholar]
  37. Waller F., Achatz B., Baltruschat H., Fodor J., Becker K., Fischer M., Heier T., Hückelhoven R., Neumann C.. & other authors ( 2005;). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. . Proc Natl Acad Sci U S A 102:, 13386–13391. [CrossRef][PubMed]
    [Google Scholar]
  38. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  39. Wieser M., Denner E. B. M., Kämpfer P., Schumann P., Tindall B., Steiner U., Vybiral D., Lubitz W., Maszenan A. M.. & other authors ( 2002;). Emended descriptions of the genus Micrococcus, Micrococcus luteus (Cohn 1872) and Micrococcus lylae (Kloos et al. 1974). . Int J Syst Evol Microbiol 52:, 629–637.[PubMed]
    [Google Scholar]
  40. Xia X.. ( 2013;). dambe5: a comprehensive software package for data analysis in molecular biology and evolution. . Mol Biol Evol 30:, 1720–1728. [CrossRef][PubMed]
    [Google Scholar]
  41. Zhang J. Y., Liu X. Y., Liu S. J.. ( 2010;). Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. . Int J Syst Evol Microbiol 60:, 1897–1903. [CrossRef][PubMed]
    [Google Scholar]
  42. Zhao G. Z., Li J., Qin S., Zhang Y. Q., Zhu W. Y., Jiang C. L., Xu L. H., Li W. J.. ( 2009;). Micrococcus yunnanensis sp. nov., a novel actinobacterium isolated from surface-sterilized Polyspora axillaris roots. . Int J Syst Evol Microbiol 59:, 2383–2387. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063339-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063339-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error