1887

Abstract

A Gram-stain-negative, cream‐pigmented, motile, extremely halophilic archaeon, designated strain IC38, was isolated from a saline mud sample taken from a hypersaline lake, Aran-Bidgol, in Iran. The strain required at least 2.5 M NaCl for growth. However, MgCl was not required. Optimal growth occurred with 4.3 M NaCl and 0.2 M MgCl. The optimum pH and temperature for growth were pH 7.0 and 35 °C, respectively, and strain IC38 was able to grow over a pH range of 6.5–9.0, and a temperature range of 25–45 °C. Analysis of the 16S rRNA gene sequence revealed that strain IC38 clustered with the two species of the genus , EJ-46 and XH-70, with sequence similarities of 96.4 % and 96.1 %, respectively. The similarities between the rpoB′ gene of the novel strain and and were 90.7 % and 90.3 %, respectively. The polar lipid pattern of strain IC38 consisted of phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. Three unidentified glycolipids and two minor phospholipids were also observed. The DNA G+C content of strain IC38 was 62.6 mol%. On the basis of the phylogenetic analysis, as well as the biochemical and physiological characteristics, the new isolate is suggested to be a representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is IC38 ( = IBRC-M 10022 = KCTC 4051).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063297-0
2014-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3422.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063297-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  2. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  3. Castillo A. M., Gutiérrez M. C., Kamekura M., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2006;). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. . Int J Syst Evol Microbiol 56:, 765–770. [CrossRef][PubMed]
    [Google Scholar]
  4. Castillo A. M., Gutiérrez M. C., Kamekura M., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A.. ( 2007;). Halovivax ruber sp. nov., an extremely halophilic archaeon isolated from Lake Xilinhot, Inner Mongolia, China. . Int J Syst Evol Microbiol 57:, 1024–1027. [CrossRef][PubMed]
    [Google Scholar]
  5. DeLong E. F.. ( 1992;). Archaea in coastal marine environments. . Proc Natl Acad Sci U S A 89:, 5685–5689. [CrossRef][PubMed]
    [Google Scholar]
  6. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  7. Dyall-Smith, M. ( 2009;). The Halohandbook: Protocols for Haloarchaeal Genetics. http://www.haloarchaea.com/resources/halohandbook.
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. González C., Gutiérrez C., Ramirez C.. ( 1978;). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef][PubMed]
    [Google Scholar]
  11. Gutiérrez C., González C.. ( 1972;). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  12. Hezayen F. F., Rehm B. H. A., Tindall B. J., Steinbüchel A.. ( 2001;). Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). . Int J Syst Evol Microbiol 51:, 1133–1142. [CrossRef][PubMed]
    [Google Scholar]
  13. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  15. Minegishi H., Kamekura M., Itoh T., Echigo A., Usami R., Hashimoto T.. ( 2010;). Further refinement of the phylogeny of the Halobacteriaceae based on the full-length RNA polymerase subunit B'(rpoB') gene. . Int J Syst Evol Microbiol 60:, 2398–2408. [CrossRef][PubMed]
    [Google Scholar]
  16. Oren A., Ventosa A., Grant W. D.. ( 1997;). Proposed minimal standards for description of new taxa in the order Halobacteriales. . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  17. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  18. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  19. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063297-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063297-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error