1887

Abstract

The Gram-stain-negative, rod-shaped bacterial isolate BT-1 is the closest relative to the genus ‘ Liberibacter ’ cultured to date. BT-1 was recovered from the phloem sap of a defoliating mountain papaya in Puerto Rico. The BT-1 16S rRNA gene sequence showed that strain BT-1 is most closely related to members of the genus ‘ Liberibacter ’ sharing 94.7 % 16S rRNA gene sequence similarity with ‘ Liberibacter americanus ’ and ‘ Liberibacter asiaticus ’. Additionally, average nucleotide identity, 16S rRNA gene sequences and conserved protein sequences supported inclusion of the previously described species of the genus ‘ Liberibacter ’ in a genus with BT-1. The prominent fatty acids of isolate BT-1 were Cω7 (77.2 %), C OH (4.8 %), C (4.4 %) and C (3.5 %). Both physiological and genomic characteristics support the creation of the genus , as well as the novel species gen. nov., sp. nov. with type strain BT-1 ( = ATCC BAA-2481 = DSM 26877).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063255-0
2014-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2461.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063255-0&mimeType=html&fmt=ahah

References

  1. Alsmark C. M., Frank A. C., Karlberg E. O., Legault B. A., Ardell D. H., Canbäck B., Eriksson A. S., Näslund A. K., Handley S. A.. & other authors ( 2004;). The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. . Proc Natl Acad Sci U S A 101:, 9716–9721. [CrossRef][PubMed]
    [Google Scholar]
  2. Anisimova M., Gascuel O.. ( 2006;). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. . Syst Biol 55:, 539–552. [CrossRef][PubMed]
    [Google Scholar]
  3. Brown P. J. B., de Pedro M. A., Kysela D. T., Van der Henst C., Kim J., De Bolle X., Fuqua C., Brun Y. V.. ( 2012;). Polar growth in the Alphaproteobacterial order Rhizobiales. . Proc Natl Acad Sci U S A 109:, 1697–1701. [CrossRef][PubMed]
    [Google Scholar]
  4. Capoor S. P., Rao D. G., Viswanath S. M.. ( 1967;). Diaphorina citri kuway, a vector of greening disease of citrus in India. . Indian J Agric Sci 37:, 572–577.
    [Google Scholar]
  5. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  6. Chenoweth M. R., Somerville G. A., Krause D. C., O’Reilly K. L., Gherardini F. C.. ( 2004;). Growth characteristics of Bartonella henselae in a novel liquid medium: primary isolation, growth-phase-dependent phage induction, and metabolic studies. . Appl Environ Microbiol 70:, 656–663. [CrossRef][PubMed]
    [Google Scholar]
  7. Chevenet F., Brun C., Bañuls A. L., Jacq B., Christen R.. ( 2006;). TreeDyn: towards dynamic graphics and annotations for analyses of trees. . BMC Bioinformatics 7:, 439. [CrossRef][PubMed]
    [Google Scholar]
  8. Davis M. J., Mondal S. N., Chen H., Rogers M. E., Brlansky R. H.. ( 2008;). Co-cultivation of ‘Candidatus Liberibacter asiaticus’ with Actinobacteria from citrus with Huanglongbing. . Plant Dis 92:, 1547–1550. [CrossRef]
    [Google Scholar]
  9. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  10. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  11. Fagen J. R., Leonard M. T., McCullough C. M., Edirisinghe J. N., Henry C. S., Davis M. J., Triplett E. W.. ( 2014;). Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of Liberibacter. . PLoS ONE 9:, e84469. [CrossRef][PubMed]
    [Google Scholar]
  12. Galibert F., Finan T. M., Long S. R., Puhler A., Abola P., Ampe F., Barloy-Hubler F., Barnett M. J., Becker A.. & other authors ( 2001;). The composite genome of the legume symbiont Sinorhizobium meliloti. . Science 293:, 668–672. [CrossRef][PubMed]
    [Google Scholar]
  13. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  14. Hansen A. K., Trumble J. T., Stouthamer R., Paine T. D.. ( 2008;). A new Huanglongbing Species, “Candidatus Liberibacter psyllaurous,” found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). . Appl Environ Microbiol 74:, 5862–5865. [CrossRef][PubMed]
    [Google Scholar]
  15. Hertig M.. ( 1936;). The rickettsia, Wolbachia pipientis (genet sp. n.) and associated inclusions of the mosquito Culex pipiens. . Parasitology 28:, 453–486. [CrossRef]
    [Google Scholar]
  16. Jagoueix S., Bove J. M., Garnier M.. ( 1994;). The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. . Int J Syst Bacteriol 44:, 379–386. [CrossRef][PubMed]
    [Google Scholar]
  17. Jarvis B. D. W., Tighe S. W.. ( 1994;). Rapid identification of Rhizobium species based on cellular fatty acid analysis. . Plant Soil 161:, 31–41. [CrossRef]
    [Google Scholar]
  18. Kapur S. P., Kapoor S. K., Cheema S. S., Dhillon R. S.. ( 1978;). Effect of greening disease on tree and fruit characters of Kinnow mandarin. . Punjab Hort J 50:, 76–79.
    [Google Scholar]
  19. Leonard M. T., Fagen J. R., Davis-Richardson A. G., Davis M. J., Triplett E. W.. ( 2012;). Complete genome sequence of Liberibacter crescens BT-1. . Stand Genomic Sci 7:, 271–283. [CrossRef][PubMed]
    [Google Scholar]
  20. Liefting L. W., Weir B. S., Pennycook S. R., Clover G. R. G.. ( 2009;). Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. . Int J Syst Evol Microbiol 59:, 2274–2276. [CrossRef][PubMed]
    [Google Scholar]
  21. Murray R. G. E., Stackebrandt E.. ( 1995;). Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. . Int J Syst Bacteriol 45:, 186–187. [CrossRef][PubMed]
    [Google Scholar]
  22. Pelz-Stelinski K. S., Brlansky R. H., Ebert T. A., Rogers M. E.. ( 2010;). Transmission parameters for Candidatus liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). . J Econ Entomol 103:, 1531–1541. [CrossRef][PubMed]
    [Google Scholar]
  23. Pérez K. A., Piñol B., Rosete Y. A., Wilson M., Boa E., Lucas J.. ( 2010;). Transmission of the phytoplasma associated with bunchy top symptom of papaya by Empoasca papaya Oman. . J Phytopathol 158:, 194–196. [CrossRef]
    [Google Scholar]
  24. Raddadi N., Gonella E., Camerota C., Pizzinat A., Tedeschi R., Crotti E., Mandrioli M., Bianco P. A., Daffonchio D., Alma A.. ( 2011;). Candidatus Liberibacter europaeus’ sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. . Environ Microbiol 13:, 414–426. [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  26. Segovia L., Young J. P. W., Martínez-Romero E.. ( 1993;). Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov.. Int J Syst Bacteriol 43:, 374–377. [CrossRef][PubMed]
    [Google Scholar]
  27. Shokrollah H., Abdullah T. L., Sijam K., Abdullah S. N. A.. ( 2010;). Ultrastructure of Candidatus Liberibacter asiaticus and its damage in Huanglongbing (HLB) infected citrus. . African J Biotechnol 9:, 5897–5901.
    [Google Scholar]
  28. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  29. Teixeira D. C., Saillard C., Eveillard S., Danet J. L., da Costa P. I., Ayres A. J., Bové J.. ( 2005;). Candidatus Liberibacter americanus’, associated with citrus huanglongbing (greening disease) in São Paulo State, Brazil. . Int J Syst Evol Microbiol 55:, 1857–1862. [CrossRef][PubMed]
    [Google Scholar]
  30. Welch D. F., Pickett D. A., Slater L. N., Steigerwalt A. G., Brenner D. J.. ( 1992;). Rochalimaea henselae sp. nov., a cause of septicemia, bacillary angiomatosis, and parenchymal bacillary peliosis. . J Clin Microbiol 30:, 275–280.[PubMed]
    [Google Scholar]
  31. Werren J. H.. ( 1997;). Biology of Wolbachia. . Annu Rev Entomol 42:, 587–609. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang S., Flores-Cruz Z., Zhou L., Kang B.-H., Fleites L. A., Gooch M. D., Wulff N. A., Davis M. J., Duan Y.-P., Gabriel D. W.. ( 2011;). Ca. Liberibacter asiaticus’ carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections. . Mol Plant Microbe Interact 24:, 458–468. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063255-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063255-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error