1887

Abstract

The presence of bifidobacteria and representatives of the new genus within the family in the digestive tract of wild pigs was reported recently. Results based on comparative 16S rRNA gene sequence analysis of a new fructose-6-phosphate phosphoketolase-positive bacterial isolate, strain DPVI-TET3, originating from the small intestine of a wild pig revealed a relationship to DPTE4 (96.8 % sequence similarity). Phylogenetic and comparative analyses based on 16S rRNA, , , , and partial gene sequences confirmed the relationship of the novel bacterial strain to DPTE4 in comparison with other bifidobacterial species occurring in the digestive tract of domestic and wild pigs. Differences in utilization of various substrates, production of enzymes, cell morphology, peptidoglycan structure and profiles of cellular fatty acids and polar lipids between strain DPVI-TET3 and DPTE4 allow the establishment of a novel species, for which the name sp. nov. is proposed. The type strain is strain DPVI-TET3 ( = CCM 7943 = DSM 24742).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063230-0
2014-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/2932.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063230-0&mimeType=html&fmt=ahah

References

  1. Berthoud H., Chavagnat F., Haueter M., Casey M. G.. ( 2005;). Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. . Food Sci Technol 38:, 101–105. [CrossRef]
    [Google Scholar]
  2. Biavati B., Mattarelli P.. ( 2012;). Genus Bifidobacterium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 5, pp. 171–206. Edited by Goodfellow M., Kämpfer P., Busse H.-J., Suzuki K., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  4. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  5. Delcenserie V., Gavini F., Beerens H., Tresse O., Franssen C., Daube G.. ( 2007;). Description of a new species, Bifidobacterium crudilactis sp. nov., isolated from raw milk and raw milk cheeses. . Syst Appl Microbiol 30:, 381–389. [CrossRef][PubMed]
    [Google Scholar]
  6. Delétoile A., Passet V., Aires J., Chambaud I., Butel M.-J., Smokvina T., Brisse S.. ( 2010;). Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. . Res Microbiol 161:, 82–90. [CrossRef][PubMed]
    [Google Scholar]
  7. Desjardins M.-L., Roy D., Goulet J.. ( 1990;). Growth of bifidobacteria and their enzyme profiles. . J Dairy Sci 73:, 299–307. [CrossRef]
    [Google Scholar]
  8. Endo A., Futagawa-Endo Y., Schumann P., Pükall R., Dicks L. M. T.. ( 2012;). Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas). . Syst Appl Microbiol 35:, 92–97. [CrossRef][PubMed]
    [Google Scholar]
  9. García-Aljaro C., Ballesté E., Rosselló-Móra R., Cifuentes A., Richter M., Blanch A. R.. ( 2012;). Neoscardovia arbecensis gen. nov., sp. nov., isolated from porcine slurries. . Syst Appl Microbiol 35:, 374–379. [CrossRef][PubMed]
    [Google Scholar]
  10. Gavini F., Pourcher A. M., Neut C., Monget D., Romond C., Oger C., Izard D.. ( 1991;). Phenotypic differentiation of bifidobacteria of human and animal origins. . Int J Syst Bacteriol 41:, 548–557. [CrossRef][PubMed]
    [Google Scholar]
  11. Jeon Y. S., Chung H., Park S., Hur I., Lee J. H., Chun J.. ( 2005;). jPHYDIT: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. . Bioinformatics 21:, 3171–3173. [CrossRef][PubMed]
    [Google Scholar]
  12. Jian W., Dong X.. ( 2002;). Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. . Int J Syst Evol Microbiol 52:, 809–812. [CrossRef][PubMed]
    [Google Scholar]
  13. Killer J., Kopecný J., Mrázek J., Rada V., Benada O., Koppová I., Havlík J., Straka J.. ( 2009;). Bifidobacterium bombi sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 59:, 2020–2024. [CrossRef][PubMed]
    [Google Scholar]
  14. Killer J., Kopečný J., Mrázek J., Havlík J., Koppová I., Benada O., Rada V., Kofroňová O.. ( 2010;). Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. . Syst Appl Microbiol 33:, 359–366. [CrossRef][PubMed]
    [Google Scholar]
  15. Killer J., Kopečný J., Mrázek J., Koppová I., Havlík J., Benada O., Kott T.. ( 2011;). Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. . Int J Syst Evol Microbiol 61:, 1315–1321. [CrossRef][PubMed]
    [Google Scholar]
  16. Killer J., Mrázek J., Bunešová V., Havlík J., Koppová I., Benada O., Rada V., Kopečný J., Vlková E.. ( 2013a;). Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). . Syst Appl Microbiol 36:, 11–16. [CrossRef][PubMed]
    [Google Scholar]
  17. Killer J., Rocková Š., Vlková E., Rada V., Havlík J., Kopečný J., Bunesová V., Benada O., Kofronová O.. & other authors ( 2013b;). Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov.. Int J Syst Evol Microbiol 63:, 4439–4446. [CrossRef][PubMed]
    [Google Scholar]
  18. Leblond-Bourget N., Philippe H., Mangin I., Decaris B.. ( 1996;). 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific Bifidobacterium phylogeny. . Int J Syst Bacteriol 46:, 102–111. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Moubareck C., Gavini F., Vaugien L., Butel M. J., Doucet-Populaire F.. ( 2005;). Antimicrobial susceptibility of bifidobacteria. . J Antimicrob Chemother 55:, 38–44. [CrossRef][PubMed]
    [Google Scholar]
  21. Nelson K. E., Zinder S. H., Hance I., Burr P., Odongo D., Wasawo D., Odenyo A., Bishop R.. ( 2003;). Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. . Environ Microbiol 5:, 1212–1220. [CrossRef][PubMed]
    [Google Scholar]
  22. Ochman H., Worobey M., Kuo C. H., Ndjango J. B., Peeters M., Hahn B. H., Hugenholtz P.. ( 2010;). Evolutionary relationships of wild hominids recapitulated by gut microbial communities. . PLoS Biol 8:, e1000546. [CrossRef][PubMed]
    [Google Scholar]
  23. Okamoto M., Benno Y., Leung K.-P., Maeda N.. ( 2007;). Metascardovia criceti gen. nov., sp. nov., from hamster dental plaque. . Microbiol Immunol 51:, 747–754. [CrossRef][PubMed]
    [Google Scholar]
  24. Orban J. I., Patterson J. A.. ( 2000;). Modification of the phosphoketolase assay for rapid identification of bifidobacteria. . J Microbiol Methods 40:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  25. Rossi M., Amaretti A., Raimondi S.. ( 2011;). Folate production by probiotic bacteria. . Nutrients 3:, 118–134. [CrossRef][PubMed]
    [Google Scholar]
  26. Scardovi V.. ( 1986;). Genus Bifidobacterium. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1418–1434. Edited by Sneath P. H. A., Mair N. S., Sharp M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  27. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  28. Sikorska H., Smoragiewicz W.. ( 2013;). Role of probiotics in the prevention and treatment of meticillin-resistant Staphylococcus aureus infections. . Int J Antimicrob Agents 42:, 475–481. [CrossRef][PubMed]
    [Google Scholar]
  29. Simpson P. J., Ross R. P., Fitzgerald G. F., Stanton C.. ( 2004;). Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. . Int J Syst Evol Microbiol 54:, 401–406. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Tejero-Sariñena S., Barlow J., Costabile A., Gibson G. R., Rowland I.. ( 2013;). Antipathogenic activity of probiotics against Salmonella typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains. ? Anaerobe 24:, 60–65. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson-Chagoyán O. C., Maldonado J., Gil A.. ( 2007;). Colonization and impact of disease and other factors on intestinal microbiota. . Dig Dis Sci 52:, 2069–2077. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  34. Trebichavsky I., Rada V., Splichalova A., Splichal I.. ( 2009;). Cross-talk of human gut with bifidobacteria. . Nutr Rev 67:, 77–82. [CrossRef][PubMed]
    [Google Scholar]
  35. Tsuchida S., Takahashi S., Nguema P. P. M., Fujita S., Kitahara M., Yamagiwa J., Ngomanda A., Ohkuma M., Ushida K.. ( 2014;). Bifidobacterium moukalabense sp. nov., isolated from the faeces of wild west lowland gorilla (Gorilla gorilla gorilla). . Int J Syst Evol Microbiol 64:, 449–455. [CrossRef][PubMed]
    [Google Scholar]
  36. Ventura M., Canchaya C., Meylan V., Klaenhammer T. R., Zink R.. ( 2003;). Analysis, characterization, and loci of the tuf genes in Lactobacillus and Bifidobacterium species and their direct application for species identification. . Appl Environ Microbiol 69:, 6908–6922. [CrossRef][PubMed]
    [Google Scholar]
  37. Ventura M., Zink R., Fitzgerald G. F., van Sinderen D.. ( 2005;). Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing. . Appl Environ Microbiol 71:, 487–500. [CrossRef][PubMed]
    [Google Scholar]
  38. Ventura M., Canchaya C., Del Casale A., Dellaglio F., Neviani E., Fitzgerald G. F., van Sinderen D.. ( 2006;). Analysis of bifidobacterial evolution using a multilocus approach. . Int J Syst Evol Microbiol 56:, 2783–2792. [CrossRef][PubMed]
    [Google Scholar]
  39. Vlasova A. N., Chattha K. S., Kandasamy S., Liu Z., Esseili M., Shao L., Rajashekara G., Saif L. J.. ( 2013;). Lactobacilli and bifidobacteria promote immune homeostasis by modulating innate immune responses to human rotavirus in neonatal gnotobiotic pigs. . PLoS ONE 8:, e76962. [CrossRef][PubMed]
    [Google Scholar]
  40. Vlková E., Rada V., Popelářová P., Trojanová I., Killer J.. ( 2006;). Antimicrobial susceptibility of bifidobacteria isolated from gastrointestinal tract of calves. . Livest Sci 105:, 253–259. [CrossRef]
    [Google Scholar]
  41. Walter J.. ( 2008;). Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. . Appl Environ Microbiol 74:, 4985–4996. [CrossRef][PubMed]
    [Google Scholar]
  42. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  43. Xu B., Huang Z., Wang X., Gao R., Tang X., Mu Y., Yang Y., Shi H., Zhu L.. ( 2010;). Phylogenetic analysis of the fecal flora of the wild pygmy loris. . Am J Primatol 72:, 699–706. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063230-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063230-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error