1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3, was isolated from a deep-sea sample containing sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3–0.8 µm in width and 1.5–10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3 grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l. Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including β-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3 with the genus , with Ob7 as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus , sp. nov., with Rift-s3 ( = DSM 26467 = VKM B-2803) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063156-0
2014-09-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3307.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063156-0&mimeType=html&fmt=ahah

References

  1. Abramov S. M., Sadraddinova E. R., Shestakov A. I., Voronin O. G., Karyakin A. A., Zorin N. A., Netrusov A. I.. ( 2013;). Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode. . PLoS ONE 8:, e83004. [CrossRef][PubMed]
    [Google Scholar]
  2. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G.. ( 1997;). Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. . Int J Syst Bacteriol 47:, 1118–1123. [CrossRef][PubMed]
    [Google Scholar]
  3. Balk M., Weijma J., Stams A. J. M.. ( 2002;). Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. . Int J Syst Evol Microbiol 52:, 1361–1368. [CrossRef][PubMed]
    [Google Scholar]
  4. Bhandari V., Gupta R. S.. ( 2014;). Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. . Antonie van Leeuwenhoek 105:, 143–168. [CrossRef][PubMed]
    [Google Scholar]
  5. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A.. ( 1990;). Desulfurella acetivorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. . Arch Microbiol 153:, 151–155. [CrossRef]
    [Google Scholar]
  6. Fardeau M.-L., Goulhen F., Bruschi M., Khelifi N., Cayol J.-L., Ignatiadis I., Guyot F., Ollivier B.. ( 2009;). Archaeoglobus fulgidus and Thermotoga elfii, thermophilic isolates from deep geothermal water of the Paris Basin. . Geomicrobiol J 26:, 119–130. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Huber R., Stetter K. O.. ( 1992;). Hyperthermophilic and extremely thermophilic bacteria. . In Thermophilic Bacteria, pp. 185–194. Edited by Kristjansson J. K... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  9. Huber R., Stetter K. O.. ( 1999;). Thermotogales. . In Embryonic Encyclopaedia of Life Sciences (http://www.els.net/WileyCDA). Nature Publishing Group;. London, UK:.
    [Google Scholar]
  10. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O.. ( 1989;). Thermosipho africanus gen. nov., represents a new genus of thermophilic Eubacteria within the “Thermotogales”. . Syst Appl Microbiol 12:, 32–37. [CrossRef]
    [Google Scholar]
  11. Kendall M. M.. ( 2002;). III. Isolation of a novel thermophilic, iron-reducing bacterium from a deep-sea hydrothermal vent. In Thesis for the degree of Master of Science in Biology, pp. 23–40. Portland State University;, USA:.
    [Google Scholar]
  12. Kevbrin V. V., Zavarzin G. A.. ( 1992;). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum. . Microbiology (English translation of Mikrobiologiia) 61:, 812–817.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Kuwabara T., Kawasaki A., Uda I., Sugai A.. ( 2011;). Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. . Int J Syst Evol Microbiol 61:, 1622–1627. [CrossRef][PubMed]
    [Google Scholar]
  15. L’Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C.. ( 2001;). Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. . Int J Syst Evol Microbiol 51:, 1327–1334.[PubMed]
    [Google Scholar]
  16. Park D.. ( 2007;). Genomic DNA isolation from different biological materials. . In Protocols for Nucleic Acid Analysis by Nonradioactive Probes (Methods in Molecular Biology, vol. 353), pp. 3–13. Edited by Hilario E., Mackay J... Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  17. Perevalova A. A., Kublanov I. V., Baslerov R. V., Zhang G., Bonch-Osmolovskaya E. A.. ( 2013;). Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring. . Int J Syst Evol Microbiol 63:, 479–483. [CrossRef][PubMed]
    [Google Scholar]
  18. Podosokorskaya O. A., Kublanov I. V., Reysenbach A.-L., Kolganova T. V., Bonch-Osmolovskaya E. A.. ( 2011;). Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 61:, 1160–1164. [CrossRef][PubMed]
    [Google Scholar]
  19. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Novikov A. A., Kolganova T. V., Kublanov I. V.. ( 2013;). Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae. . Int J Syst Evol Microbiol 63:, 86–92. [CrossRef][PubMed]
    [Google Scholar]
  20. Rabus R., Hansen T. A., Widdel F.. ( 2006;). Dissimilatory sulfate- and sulfur-reducing prokaryotes. . In The Prokaryotes, , 3rd edn., vol. 2, pp. 659–768. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E... Singapore:: Springer;. [CrossRef]
    [Google Scholar]
  21. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L.. ( 1996;). Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. . Int J Syst Bacteriol 46:, 321–323. [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y.. ( 1996;). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46:, 1099–1104. [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Slobodkin A. I., Jeanthon C., L’Haridon S., Nazina T., Miroshnichenko M., Bonch-Osmolovskaya E.. ( 1999;). Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western siberia. . Curr Microbiol 39:, 99–102. [CrossRef][PubMed]
    [Google Scholar]
  26. Slobodkin A. I., Gavrilov S. N., Slobodkina G. B.. ( 2011;). Thermophilic iron-reducing prokaryotes. . In Proceedings of Winogradsky Institute of Microbiology, v. XVI: Thermophilic Microorganisms, pp. 36–63. Edited by Galchenko V. F... Moscow, Russia:: MAKS Press. (In Russian);.
    [Google Scholar]
  27. Slobodkina G. B., Panteleeva A. N., Kostrikina N. A., Kopitsyn D. S., Bonch-Osmolovskaya E. A., Slobodkin A. I.. ( 2013;). Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. . Extremophiles 17:, 833–839. [CrossRef][PubMed]
    [Google Scholar]
  28. Takai K., Horikoshi K.. ( 2000;). Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. . Extremophiles 4:, 9–17. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Trüper H. G., Schlegel H. G.. ( 1964;). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. . Antonie van Leeuwenhoek 30:, 225–238. [CrossRef][PubMed]
    [Google Scholar]
  32. Tugel J. B., Hines M. E., Jones G. E.. ( 1986;). Microbial iron reduction by enrichment cultures isolated from estuarine sediments. . Appl Environ Microbiol 52:, 1167–1172.[PubMed]
    [Google Scholar]
  33. Urios L., Cueff-Gauchard V., Pignet P., Postec A., Fardeau M.-L., Ollivier B., Barbier G.. ( 2004;). Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 54:, 1953–1957. [CrossRef][PubMed]
    [Google Scholar]
  34. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R.. ( 1998;). Microbiological evidence for Fe(III) reduction on early Earth. . Nature 395:, 65–67. [CrossRef][PubMed]
    [Google Scholar]
  35. Wolin E. A., Wolin M. J., Wolfe R. S.. ( 1963;). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063156-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063156-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error