1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3, was isolated from a deep-sea sample containing sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3–0.8 µm in width and 1.5–10 µm in length, surrounded by a sheath-like structure (toga). Strain Rift-s3 grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l. Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including β-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3 with the genus , with Ob7 as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus , sp. nov., with Rift-s3 ( = DSM 26467 = VKM B-2803) as the type strain.

Funding
This study was supported by the:
  • , Russian Ministry of Education and Science , (Award 14.512.11.0070)
  • , RFBR , (Award KO_a_13-04-92606 and A_13-04-02157)
  • , Russian Academy of Sciences
  • , EC grant of FP7 Program (‘Hotzyme’)
  • , President of Russia , (Award MK-6339.2013.4)
  • , RF President Fellowship for Young Scientists
  • , IFREMER
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.063156-0
2014-09-01
2021-01-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3307.html?itemId=/content/journal/ijsem/10.1099/ijs.0.063156-0&mimeType=html&fmt=ahah

References

  1. Abramov S. M., Sadraddinova E. R., Shestakov A. I., Voronin O. G., Karyakin A. A., Zorin N. A., Netrusov A. I. ( 2013 ). Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode. . PLoS ONE 8, e83004. [CrossRef] [PubMed]
    [Google Scholar]
  2. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. ( 1997 ). Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. . Int J Syst Bacteriol 47, 11181123. [CrossRef] [PubMed]
    [Google Scholar]
  3. Balk M., Weijma J., Stams A. J. M. ( 2002 ). Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. . Int J Syst Evol Microbiol 52, 13611368. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bhandari V., Gupta R. S. ( 2014 ). Molecular signatures for the phylum (class) Thermotogae and a proposal for its division into three orders (Thermotogales, Kosmotogales ord. nov. and Petrotogales ord. nov.) containing four families (Thermotogaceae, Fervidobacteriaceae fam. nov., Kosmotogaceae fam. nov. and Petrotogaceae fam. nov.) and a new genus Pseudothermotoga gen. nov. with five new combinations. . Antonie van Leeuwenhoek 105, 143168. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. ( 1990 ). Desulfurella acetivorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. . Arch Microbiol 153, 151155. [CrossRef]
    [Google Scholar]
  6. Fardeau M.-L., Goulhen F., Bruschi M., Khelifi N., Cayol J.-L., Ignatiadis I., Guyot F., Ollivier B. ( 2009 ). Archaeoglobus fulgidus and Thermotoga elfii, thermophilic isolates from deep geothermal water of the Paris Basin. . Geomicrobiol J 26, 119130. [CrossRef]
    [Google Scholar]
  7. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  8. Huber R., Stetter K. O. ( 1992 ). Hyperthermophilic and extremely thermophilic bacteria. . In Thermophilic Bacteria, pp. 185194. Edited by Kristjansson J. K. . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  9. Huber R., Stetter K. O. ( 1999 ). Thermotogales . . In Embryonic Encyclopaedia of Life Sciences ( http://www.els.net/WileyCDA). Nature Publishing Group;. London, UK:.
    [Google Scholar]
  10. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. ( 1989 ). Thermosipho africanus gen. nov., represents a new genus of thermophilic Eubacteria within the “Thermotogales” . . Syst Appl Microbiol 12, 3237. [CrossRef]
    [Google Scholar]
  11. Kendall M. M. ( 2002 ). III. Isolation of a novel thermophilic, iron-reducing bacterium from a deep-sea hydrothermal vent. In Thesis for the degree of Master of Science in Biology, pp. 2340. Portland State University;, USA:.
    [Google Scholar]
  12. Kevbrin V. V., Zavarzin G. A. ( 1992 ). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum . . Microbiology (English translation of Mikrobiologiia) 61, 812817.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kuwabara T., Kawasaki A., Uda I., Sugai A. ( 2011 ). Thermosipho globiformans sp. nov., an anaerobic thermophilic bacterium that transforms into multicellular spheroids with a defect in peptidoglycan formation. . Int J Syst Evol Microbiol 61, 16221627. [CrossRef] [PubMed]
    [Google Scholar]
  15. L’Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. ( 2001 ). Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. . Int J Syst Evol Microbiol 51, 13271334.[PubMed]
    [Google Scholar]
  16. Park D. ( 2007 ). Genomic DNA isolation from different biological materials. . In Protocols for Nucleic Acid Analysis by Nonradioactive Probes ( Methods in Molecular Biology , vol. 353), pp. 313. Edited by Hilario E., Mackay J. . Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  17. Perevalova A. A., Kublanov I. V., Baslerov R. V., Zhang G., Bonch-Osmolovskaya E. A. ( 2013 ). Brockia lithotrophica gen. nov., sp. nov., an anaerobic thermophilic bacterium from a terrestrial hot spring. . Int J Syst Evol Microbiol 63, 479483. [CrossRef] [PubMed]
    [Google Scholar]
  18. Podosokorskaya O. A., Kublanov I. V., Reysenbach A.-L., Kolganova T. V., Bonch-Osmolovskaya E. A. ( 2011 ). Thermosipho affectus sp. nov., a thermophilic, anaerobic, cellulolytic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 61, 11601164. [CrossRef] [PubMed]
    [Google Scholar]
  19. Podosokorskaya O. A., Bonch-Osmolovskaya E. A., Novikov A. A., Kolganova T. V., Kublanov I. V. ( 2013 ). Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae . . Int J Syst Evol Microbiol 63, 8692. [CrossRef] [PubMed]
    [Google Scholar]
  20. Rabus R., Hansen T. A., Widdel F. ( 2006 ). Dissimilatory sulfate- and sulfur-reducing prokaryotes. . In The Prokaryotes, , 3rd edn., vol. 2, pp. 659768. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. . Singapore:: Springer;. [CrossRef]
    [Google Scholar]
  21. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. ( 1996 ). Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. . Int J Syst Bacteriol 46, 321323. [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  23. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. ( 1996 ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46, 10991104. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  25. Slobodkin A. I., Jeanthon C., L’Haridon S., Nazina T., Miroshnichenko M., Bonch-Osmolovskaya E. ( 1999 ). Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western siberia. . Curr Microbiol 39, 99102. [CrossRef] [PubMed]
    [Google Scholar]
  26. Slobodkin A. I., Gavrilov S. N., Slobodkina G. B. ( 2011 ). Thermophilic iron-reducing prokaryotes. . In Proceedings of Winogradsky Institute of Microbiology, v. XVI: Thermophilic Microorganisms, pp. 3663. Edited by Galchenko V. F. . Moscow, Russia:: MAKS Press. (In Russian);.
    [Google Scholar]
  27. Slobodkina G. B., Panteleeva A. N., Kostrikina N. A., Kopitsyn D. S., Bonch-Osmolovskaya E. A., Slobodkin A. I. ( 2013 ). Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. . Extremophiles 17, 833839. [CrossRef] [PubMed]
    [Google Scholar]
  28. Takai K., Horikoshi K. ( 2000 ). Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. . Extremophiles 4, 917. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tamura K., Nei M. ( 1993 ). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10, 512526.[PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  31. Trüper H. G., Schlegel H. G. ( 1964 ). Sulfur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . . Antonie van Leeuwenhoek 30, 225238. [CrossRef] [PubMed]
    [Google Scholar]
  32. Tugel J. B., Hines M. E., Jones G. E. ( 1986 ). Microbial iron reduction by enrichment cultures isolated from estuarine sediments. . Appl Environ Microbiol 52, 11671172.[PubMed]
    [Google Scholar]
  33. Urios L., Cueff-Gauchard V., Pignet P., Postec A., Fardeau M.-L., Ollivier B., Barbier G. ( 2004 ). Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 54, 19531957. [CrossRef] [PubMed]
    [Google Scholar]
  34. Vargas M., Kashefi K., Blunt-Harris E. L., Lovley D. R. ( 1998 ). Microbiological evidence for Fe(III) reduction on early Earth. . Nature 395, 6567. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wolin E. A., Wolin M. J., Wolfe R. S. ( 1963 ). Formation of methane by bacterial extracts. . J Biol Chem 238, 28822886.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.063156-0
Loading
/content/journal/ijsem/10.1099/ijs.0.063156-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error