1887

Abstract

A novel Gram-stain-negative, aerobic, non-endospore-forming, non-pigmented, rod-shaped, slightly halophilic bacterium, designated GBPy5, was isolated from aquatic plants of the Gomishan wetland, Iran. Cells of strain GBPy5 were motile. Growth occurred with between 1 and 10 % (w/v) NaCl and the isolate grew optimally with 3 % (w/v) NaCl. The optimum pH and temperature for growth of the strain were pH 8.0 and 30 °C, respectively, while it was able to grow over a pH range of 6.5–9.0 and a temperature range of 4–35 °C. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain GBPy5 is a member of the genus forming a monophyletic branch. The novel strain exhibited 16S rRNA gene sequence similarity of 95.4 % with type strains of PCAVU11 and J64, respectively. The major cellular fatty acids of the isolate were Cω7 (37.8 %), C (14.9 %), Cω7 (12.9 %), C 3-OH (7.1 %) and C (7.0 %). The polar lipid pattern of strain GBPy5 comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and one phospholipid. Ubiquinone 9 (Q-9) was the predominant lipoquinone. The G+C content of the genomic DNA of strain GBPy5 was 59.2 mol%. On the basis of the phenotypic and phylogenetic data, strain GBPY5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is GBPy5 ( = IBRC-M 10762 = CECT 8338).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062935-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3565.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062935-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H.. ( 2000;). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. . Int J Syst Evol Microbiol 50:, 1563–1589. [CrossRef][PubMed]
    [Google Scholar]
  2. Baron E. J., Finegold S. M.. ( 1990;). Bailey and Scott’s Diagnostic Microbiology, , 8th edn.. St Louis, MO:: Mosby;.
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. De Ley J.. ( 1992;). The proteobacteria: ribosomal RNA cistron similarities and bacterial taxonomy. . In The Prokaryotes, , 2nd edn., pp. 2111–2140. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  5. Euzéby J. P.. ( 1997;). List of bacterial names with standing in nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. http://www.bacterio.net [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using bootstrap. . Evololution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Fendrich C.. ( 1988;). Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. . Syst Appl Microbiol 11:, 36–43. [CrossRef]
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. . Int J Syst Bacteriol 46:, 234–239. [CrossRef][PubMed]
    [Google Scholar]
  10. Harrigan W. F., McCance M. E.. ( 1976;). Laboratory Methods in Food and Dairy Microbiology. London:: Academic Press;.
    [Google Scholar]
  11. Humm H. J.. ( 1946;). Marine agar-digesting bacteria of the South Atlantic coast. . Bull Duke Univ Mar Sta 3:, 45–75.
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kim K. H., Roh S. W., Chang H. W., Nam Y. D., Yoon J. H., Jeon C. O., Oh H. M., Bae J. W.. ( 2009;). Pseudomonas sabulinigri sp. nov., isolated from black beach sand. . Int J Syst Evol Microbiol 59:, 38–41. [CrossRef][PubMed]
    [Google Scholar]
  14. King E. O., Ward M. K., Raney D. E.. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. . J Lab Clin Med 44:, 301–307.[PubMed]
    [Google Scholar]
  15. Kushner D. J., Kamekura M.. ( 1988;). Physiology of halophilic eubacteria. . In Halophilic Bacteria, vol. I, pp. 109–140. Edited by Rodriguez-Valera F... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  16. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  17. Liu M., Luo X., Zhang L., Dai J., Wang Y., Tang Y., Li J., Sun T., Fang C.. ( 2009;). Pseudomonas xinjiangensis sp. nov., a moderately thermotolerant bacterium isolated from desert sand. . Int J Syst Evol Microbiol 59:, 1286–1289. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  19. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Migula W.. ( 1894;). Über ein neues system der bakterien. . Arb Bakteriol Inst Technisch Hochsch Karlsruhe 1:, 235–238 (in German).
    [Google Scholar]
  22. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  23. Palleroni N. J.. ( 1992;). Introduction to the family Pseudomonadaceae. . In The Prokaryotes, , 2nd edn., pp. 3071–3085. Edited by Balows A., Truper H. G., Umlaut U., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;.
    [Google Scholar]
  24. Palleroni N. J.. ( 2005;). Genus I. Pseudomonas Migula 1894, 237AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, part B, pp. 323–379. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M... New York:: Springer;.
    [Google Scholar]
  25. Palleroni N. J., Doudoroff M.. ( 1972;). Some properties and subdivisions of the genus Pseudomonas. . Annu Rev Phytopathol 10:, 73–100. [CrossRef]
    [Google Scholar]
  26. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1984;). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  27. Romanenko L. A., Uchino M., Falsen E., Frolova G. M., Zhukova N. V., Mikhailov V. V.. ( 2005;). Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. . Int J Syst Evol Microbiol 55:, 919–924. [CrossRef][PubMed]
    [Google Scholar]
  28. Rzhetsky A., Nei M.. ( 1992;). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9:, 945–967.
    [Google Scholar]
  29. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  31. Stanier R. Y., Palleroni N. J., Doudoroff M.. ( 1966;). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43:, 159–271. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  34. Toro M., Ramírez-Bahena M. H., Cuesta M. J., Velázquez E., Peix A.. ( 2013;). Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. . Int J Syst Evol Microbiol 63:, 4413–4420. [CrossRef][PubMed]
    [Google Scholar]
  35. Ventosa A., Quesada E., Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  36. Yoon J. H., Kim H., Kang K. H., Oh T. K., Park Y. H.. ( 2003;). Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov.. Int J Syst Evol Microbiol 53:, 1357–1361. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062935-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062935-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error