1887

Abstract

We report the isolation and growth characteristics of a gammaproteobacterial methane-oxidizing bacterium ( strain WF1, ‘whale fall 1’) that shares 98 % 16S rRNA gene sequence identity with uncultivated free-living methanotrophs and the methanotrophic endosymbionts of deep-sea mussels, ≤94.6 % 16S rRNA gene sequence identity with species of the genus and ≤93.6 % 16S rRNA gene sequence identity with species of the genera and . Strain WF1 represents the first cultivar from the ‘deep sea-1’ clade of marine methanotrophs, which includes members that participate in methane oxidation in sediments and the water column in addition to mussel endosymbionts. Cells of strain WF1 were elongated cocci, approximately 1.5 µm in diameter, and occurred singly, in pairs and in clumps. The cell wall was Gram-negative, and stacked intracytoplasmic membranes and storage granules were evident. The genomic DNA G+C content of WF1 was 40.5 mol%, significantly lower than that of currently described cultivars, and the major fatty acids were 16 : 0, 16 : 1ω9, 16 : 1ω9, 16 : 1ω8 and 16 : 2ω9,14. Growth occurred in liquid media at an optimal temperature of 23 °C, and was dependent on the presence of methane or methanol. Atmospheric nitrogen could serve as the sole nitrogen source for WF1, a capacity that had not been functionally demonstrated previously in members of . On the basis of its unique morphological, physiological and phylogenetic properties, this strain represents the type species within a new genus, and we propose the name gen. nov., sp. nov. The type strain of is WF1 ( = LMG 28393 = ATCC BAA-2619).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062927-0
2015-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/1/251.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062927-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A.. ( 1990;). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. . Appl Environ Microbiol 56:, 1919–1925.[PubMed]
    [Google Scholar]
  2. Auman A. J., Speake C. C., Lidstrom M. E.. ( 2001;). nifH sequences and nitrogen fixation in type I and type II methanotrophs. . Appl Environ Microbiol 67:, 4009–4016. [CrossRef][PubMed]
    [Google Scholar]
  3. Bodelier P. L. E., Bär Gillisen M.-J., Hordijk K., Sinninghe Damsté J., Rijpstra W. I. C., Geenevasen J. A. J., Dunfield P. F.. ( 2009;). A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria. . ISME J 3:, 606–617. [CrossRef][PubMed]
    [Google Scholar]
  4. Bowman J. P.. ( 2005;). Methylococcales ord. nov.. In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2B, pp. 248–251. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M., Boone D. R., De Vos P., Goodfellow M., Rainey F. A., Schleifer K.-H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  5. Bowman J. P., Skerratt J. H., Nichols P. D., Sly L. I.. ( 1991;). Phospholipid fatty acid and lipopolysaccharide fatty acid signature lipids in methane-utilizing bacteria. . FEMS Microbiol Lett 85:, 15–22. [CrossRef]
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C.. ( 1993;). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. . Int J Syst Bacteriol 43:, 735–753. [CrossRef]
    [Google Scholar]
  7. Bowman J. P., Sly L. I., Stackebrandt E.. ( 1995;). The phylogenetic position of the family Methylococcaceae. . Int J Syst Bacteriol 45:, 182–185. [CrossRef][PubMed]
    [Google Scholar]
  8. Bowman J. P., McCammon S. A., Skerrat J. H.. ( 1997;). Methylosphaera hansonii gen. nov., sp. nov., a psychrophilic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. . Microbiology 143:, 1451–1459. [CrossRef][PubMed]
    [Google Scholar]
  9. Braby C. E., Rouse G. W., Johnson S. B., Jones W. J., Vrijenhoek R. C.. ( 2007;). Bathymetric and temporal variation among Osedax boneworms and associated megafauna on whalefalls in Monterey Bay, California. . Deep-Sea Res Part 1 Oceanogr Res Pap 54:, 1773–1791. [CrossRef]
    [Google Scholar]
  10. Christie W. W., Han X.. ( 2010;). Lipid Analysis – Isolation, Separation, Identification, and Lipidomic Analysis. Cambridge:: Woodhead Publishing;.
    [Google Scholar]
  11. Daims H., Brühl A., Amann R., Schleifer K. H., Wagner M.. ( 1999;). The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. . Syst Appl Microbiol 22:, 434–444. [CrossRef][PubMed]
    [Google Scholar]
  12. Danilova O. V., Kulichevskaya I. S., Rozova O. N., Detkova E. N., Bodelier P. L., Trotsenko Y. A., Dedysh S. N.. ( 2013;). Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. . Int J Syst Evol Microbiol 63:, 2282–2289. [CrossRef][PubMed]
    [Google Scholar]
  13. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  14. Duperron S., Sibuet M., MacGregor B. J., Kuypers M. M., Fisher C. R., Dubilier N.. ( 2007;). Diversity, relative abundance and metabolic potential of bacterial endosymbionts in three Bathymodiolus mussel species from cold seeps in the Gulf of Mexico. . Environ Microbiol 9:, 1423–1438. [CrossRef][PubMed]
    [Google Scholar]
  15. Duperron S., Gaudron S. M., Rodrigues C. F., Cunha M. R., Decker C., Olu K.. ( 2013;). An overview of chemosynthetic symbioses in bivalves from the North Atlantic and Mediterranean Sea. . Biogeosciences 10:, 3241–3267. [CrossRef]
    [Google Scholar]
  16. Elsaied H. E., Hayashi T., Naganuma T.. ( 2004;). Molecular analysis of deep-sea hydrothermal vent aerobic methanotrophs by targeting genes of 16S rRNA and particulate methane monooxygenase. . Mar Biotechnol (NY) 6:, 503–509. [CrossRef][PubMed]
    [Google Scholar]
  17. Fang J., Barcelona M. J., Semrau J. D.. ( 2000;). Characterization of methanotrophic bacteria on the basis of intact phospholipid profiles. . FEMS Microbiol Lett 189:, 67–72. [CrossRef][PubMed]
    [Google Scholar]
  18. Griffiths M. J., van Hille R. P., Harrison S. T.. ( 2010;). Selection of direct transesterification as the preferred method for assay of fatty acid content of microalgae. . Lipids 45:, 1053–1060. [CrossRef][PubMed]
    [Google Scholar]
  19. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  20. Hayashi T., Obata H., Gamo T., Sano Y., Naganuma T.. ( 2007;). Distribution and phylogenetic characteristics of the genes encoding enzymes relevant to methane oxidation in oxygen minimum zones. . Res J Environ Sci 1:, 275–284. [CrossRef]
    [Google Scholar]
  21. Hirayama H., Fuse H., Abe M., Miyazaki M., Nakamura T., Nunoura T., Furushima Y., Yamamoto H., Takai K.. ( 2013;). Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. . Int J Syst Evol Microbiol 63:, 1073–1082. [CrossRef][PubMed]
    [Google Scholar]
  22. Hoefman S., Van Hoorde K., Boon N., Vandamme P., De Vos P., Heylen K.. ( 2012;). Survival or revival: long-term preservation induces a reversible viable but non-culturable state in methane-oxidizing bacteria. . PLoS ONE 7:, e34196. [CrossRef][PubMed]
    [Google Scholar]
  23. Iguchi H., Yurimoto H., Sakai Y.. ( 2011;). Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. . Int J Syst Evol Microbiol 61:, 810–815. [CrossRef][PubMed]
    [Google Scholar]
  24. Kalyuzhnaya M. G., Khmelenina V. N., Kotelnikova S., Holmquist L., Pedersen K., Trotsenko Y. A.. ( 1999;). Methylomonas scandinavica sp. nov., a new methanotrophic psychrotrophic bacterium isolated from deep igneous rock ground water of Sweden. . Syst Appl Microbiol 22:, 565–572. [CrossRef][PubMed]
    [Google Scholar]
  25. Kalyuzhnaya M. G., Khmelenina V., Eshinimaev B., Sorokin D., Fuse H., Lidstrom M., Trotsenko Y.. ( 2008;). Classification of halo(alkali)philic and halo(alkali)tolerant methanotrophs provisionally assigned to the genera Methylomicrobium and Methylobacter and emended description of the genus Methylomicrobium. . Int J Syst Evol Microbiol 58:, 591–596. [CrossRef][PubMed]
    [Google Scholar]
  26. Lane D.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  27. Li M., Jain S., Baker B. J., Taylor C., Dick G. J.. ( 2014;). Novel hydrocarbon monooxygenase genes in the metatranscriptome of a natural deep-sea hydrocarbon plume. . Environ Microbiol 16:, 60–71. [CrossRef][PubMed]
    [Google Scholar]
  28. Lösekann T., Knittel K., Nadalig T., Fuchs B., Niemann H., Boetius A., Amann R.. ( 2007;). Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. . Appl Environ Microbiol 73:, 3348–3362. [CrossRef][PubMed]
    [Google Scholar]
  29. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  30. Lüke C., Frenzel P.. ( 2011;). Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. . Appl Environ Microbiol 77:, 6305–6309. [CrossRef][PubMed]
    [Google Scholar]
  31. McDonald I. R., Murrell J. C.. ( 1997;). The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. . Appl Environ Microbiol 63:, 3218–3224.[PubMed]
    [Google Scholar]
  32. Moran N. A., McCutcheon J. P., Nakabachi A.. ( 2008;). Genomics and evolution of heritable bacterial symbionts. . Annu Rev Genet 42:, 165–190. [CrossRef][PubMed]
    [Google Scholar]
  33. Petersen J. M., Dubilier N.. ( 2009;). Methanotrophic symbioses in marine invertebrates. . Environ Microbiol Rep 1:, 319–335. [CrossRef][PubMed]
    [Google Scholar]
  34. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  35. Raggi L., Schubotz F., Hinrichs K. U., Dubilier N., Petersen J. M.. ( 2013;). Bacterial symbionts of Bathymodiolus mussels and Escarpia tubeworms from Chapopote, an asphalt seep in the Southern Gulf of Mexico. . Environ Microbiol 15:, 1969–1987. [CrossRef][PubMed]
    [Google Scholar]
  36. Rahalkar M., Bussmann I., Schink B.. ( 2007;). Methylosoma difficile gen. nov., sp. nov., a novel methanotroph enriched by gradient cultivation from littoral sediment of Lake Constance. . Int J Syst Evol Microbiol 57:, 1073–1080. [CrossRef][PubMed]
    [Google Scholar]
  37. Redmond M. C., Valentine D. L., Sessions A. L.. ( 2010;). Identification of novel methane-, ethane-, and propane-oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing. . Appl Environ Microbiol 76:, 6412–6422. [CrossRef][PubMed]
    [Google Scholar]
  38. Reeburgh W. S.. ( 2007;). Oceanic methane biogeochemistry. . Chem Rev 107:, 486–513. [CrossRef][PubMed]
    [Google Scholar]
  39. Robb F. T., Sowers K. R., Schreier H. J.. ( 1995;). Archaea: A Laboratory Manual: Methanogens. Cold Spring Harbor, NY:: Cold Spring Harbor Press;.
    [Google Scholar]
  40. Saunders S. E., Burke J. F.. ( 1990;). Rapid isolation of miniprep DNA for double strand sequencing. . Nucleic Acids Res 18:, 4948. [CrossRef][PubMed]
    [Google Scholar]
  41. Schauer R., Røy H., Augustin N., Gennerich H. H., Peters M., Wenzhoefer F., Amann R., Meyerdierks A.. ( 2011;). Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. . Environ Microbiol 13:, 2633–2648. [CrossRef][PubMed]
    [Google Scholar]
  42. Schmidt T. M., DeLong E. F., Pace N. R.. ( 1991;). Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. . J Bacteriol 173:, 4371–4378.[PubMed]
    [Google Scholar]
  43. Schmidtova J., Hallam S. J., Baldwin S. A.. ( 2009;). Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake. . Environ Microbiol 11:, 3233–3251. [CrossRef][PubMed]
    [Google Scholar]
  44. Sieburth J., Johnson P., Eberhardt M., Sieracki M., Lidstrom M., Laux D.. ( 1987;). The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov.. Curr Microbiol 14:, 285–293. [CrossRef]
    [Google Scholar]
  45. Spiridonova E. M., Kuznetsov B. B., Pimenov N. V., Turova T. P.. ( 2006;). [Phylogenetic characterization of endosymbionts of the hydrothermal vent mussel Bathymodiolus azoricus by analysis of the 16S rRNA, pmoL, and cbbA genes]. . Mikrobiologiia 75:, 798–806 (in Russian).[PubMed]
    [Google Scholar]
  46. Swan B. K., Martinez-Garcia M., Preston C. M., Sczyrba A., Woyke T., Lamy D., Reinthaler T., Poulton N. J., Masland E. D.. & other authors ( 2011;). Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. . Science 333:, 1296–1300. [CrossRef][PubMed]
    [Google Scholar]
  47. Tavormina P. L., Ussler W. III, Orphan V. J.. ( 2008;). Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. . Appl Environ Microbiol 74:, 3985–3995. [CrossRef][PubMed]
    [Google Scholar]
  48. Tavormina P. L., Ussler W. III, Joye S. B., Harrison B. K., Orphan V. J.. ( 2010;). Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. . ISME J 4:, 700–710. [CrossRef][PubMed]
    [Google Scholar]
  49. Uchino Y., Hirata A., Yokota A., Sugiyama J.. ( 1998;). Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.. J Gen Appl Microbiol 44:, 201–210. [CrossRef][PubMed]
    [Google Scholar]
  50. Wallner G., Amann R., Beisker W.. ( 1993;). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. . Cytometry 14:, 136–143. [CrossRef][PubMed]
    [Google Scholar]
  51. Wartiainen I., Hestnes A. G., McDonald I. R., Svenning M. M.. ( 2006;). Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78° N). . Int J Syst Evol Microbiol 56:, 109–113. [CrossRef][PubMed]
    [Google Scholar]
  52. Whittenbury R., Phillips K. C., Wilkinson J. F.. ( 1970;). Enrichment, isolation and some properties of methane-utilizing bacteria. . J Gen Microbiol 61:, 205–218. [CrossRef][PubMed]
    [Google Scholar]
  53. Wise M. G., McArthur J. V., Shimkets L. J.. ( 2001;). Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type 1 methanotrophs. . Int J Syst Evol Microbiol 51:, 611–621.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062927-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062927-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error