1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile, cream, long rod-shaped bacterium, designated strain ZL136, was isolated from deep water of the South China Sea. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain belonged to the genus Roseivivax with highest sequence similarity to OCh 239 (97.0 %), followed by sw-2 (96.9 %). Growth occurred at 4–37 °C (optimum 32 °C), pH 6.0–10.0 (optimum 8.0) and in the presence of 0–12 % (w/v) NaCl (optimum 3–4 %) in marine broth 2216. Strain ZL136 did not produce bacteriochlorophyll . The predominant fatty acids were Cω7 and/or Cω6, C, C and 11-methyl Cω7. The major polar lipids of ZL136 were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified lipid. The major respiratory quinone was ubiquinone Q-10. The genomic DNA G+C content of strain ZL136 was 67.0 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic analysis, strain ZL136 was classified as a representative of a novel species in the genus of , for which the name sp. nov. is proposed. The type strain is ZL136 ( = JCM 19386 = KCTC 32470).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062760-0
2014-08-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2540.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062760-0&mimeType=html&fmt=ahah

References

  1. Bernardet J. F. , Nakagawa Y. , Holmes B. . Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef] [PubMed]
    [Google Scholar]
  2. Beveridge T. J. , Lawrence J. R. , Murray R. G. E. . ( 2007; ). Sampling and staining for light microscopy. . In Methods for General and Molecular Bacteriology, , 3rd edn., pp. 19–33. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Chen M. H. , Sheu S. Y. , Chen C. A. , Wang J. T. , Chen W. M. . ( 2012; ). Roseivivax isoporae sp. nov., isolated from a reef-building coral, and emended description of the genus Roseivivax . . Int J Syst Evol Microbiol 62:, 1259–1264. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  5. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  6. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  7. Komagata K. , Suzuki K. . ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  8. Lyman J. , Fleming R. H. . ( 1940; ). Composition of sea water. . J Mar Res 3:, 134–146. [CrossRef]
    [Google Scholar]
  9. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by highperformance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  10. Minnikin D. , O’Donnell A. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  11. Montero-Calasanz M. del C. , Göker M. , Rohde M. , Spröer C. , Schumann P. , Busse H.-J. , Schmid M. , Tindall B. J. , Klenk H.-P. , Camacho M. . ( 2013; ). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . . Int J Syst Evol Microbiol 63:, 4386–4395. [CrossRef] [PubMed]
    [Google Scholar]
  12. Moore E. R. B. , Arnscheidt A. , Krüger A. , Strömpl C. , Mau M. . ( 1999; ). Simplified protocols for the preparation of genomic DNA from bacterial cultures. . In Molecular Microbial Ecology Manual 1.6.1, pp. 1–15. Edited by Akkermans A. D. L. , van Elsas J. D. , de Bruijn F. J. . . Dordrecht:: Kluwer;.
    [Google Scholar]
  13. Park S. , Kang S. J. , Oh T. K. , Yoon J. H. . ( 2010; ). Roseivivax lentus sp. nov., isolated from a tidal flat sediment, and emended description of the genus Roseivivax Suzuki et al. 1999. . Int J Syst Evol Microbiol 60:, 1113–1117. [CrossRef] [PubMed]
    [Google Scholar]
  14. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  15. Suzuki T. , Muroga Y. , Takahama M. , Nishimura Y. . ( 1999; ). Roseivivax halodurans gen. nov., sp. nov. and Roseivivax halotolerans sp. nov., aerobic bacteriochlorophyll-containing bacteria isolated from a saline lake. . Int J Syst Bacteriol 49:, 629–634. [CrossRef] [PubMed]
    [Google Scholar]
  16. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  17. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  18. Tindall B. J. , Sikorski J. , Smibert R. M. , Krieg N. R. . ( 2007; ). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–393. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. , Snyder L. R. . . Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  19. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  20. Wu Y. H. , Meng F. X. , Xu L. , Zhang X. Q. , Wang C. S. , Oren A. , Wu M. , Xu X. W. . ( 2013; ). Roseivivax pacificus sp. nov., isolated from deep-sea sediment. . Int J Syst Evol Microbiol 63, 4574–4579.[CrossRef]
    [Google Scholar]
  21. Xie C.-H. , Yokota A. . ( 2003; ). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. . J Gen Appl Microbiol 49:, 345–349. [CrossRef] [PubMed]
    [Google Scholar]
  22. Xiao W. , Wang Y. X. , Liu J. H. , Wang Z. G. , Zhang X. X. , Ji K. Y. , Lai Y. H. , Wen M. L. , Cui X. L. . ( 2012; ). Roseivivax sediminis sp. nov., a moderately halophilic bacterium isolated from salt mine sediment. . Int J Syst Evol Microbiol 62:, 1890–1895. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062760-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062760-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error