1887

Abstract

A Gram-staining-positive, spore-forming, obligately anaerobic, acetogenic bacterium, designated LAM1030, was isolated from methanogenic consortia enriched from biogas slurry collected from the large-scale anaerobic digester of Modern Farming Corporation in Hebei Province, China. Cells of strain LAM1030 were motile, straight or spiral-rod-shaped. Strain LAM1030 could utilize glucose, fructose, maltose, galactose, lactose, sucrose, cellobiose, mannitol, pyruvate, succinic acid and tryptophan as the sole carbon source. Acetic acid, isovaleric acid and butanoic acid were the main products of glucose fermentation. Sodium sulfite was used as an electron acceptor. Growth of strain LAM1030 was completely inhibited by the addition of ampicillin, tetracycline, gentamicin or erythromycin at a concentration of 20 µg ml. The main polar lipids of strain LAM1030 were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, 11 unknown glycolipids and two unknown phospholipids. No respiratory quinone was detected. The major fatty acids of strain LAM1030 were C (21.1 %), C (10.3 %), summed feature 9 (including C16:0 10-methyl and/or iso-C17:1 ω9c) (11.3% ), summed feature 3 (including C16:1 ω7c and/or C16:1 ω6c) (10.6% ) and iso-C (6.6 %). Analysis of the 16S rRNA gene sequence indicated that strain LAM1030 belonged to the genus and was most closely related to DSM 6970, DSM 13105 and DSM 18982, with 97.0, 96.9 and 96.8 % similarity, respectively. The G+C content of the genomic DNA of strain LAM1030 was 31.2±0.3 mol%. On the basis of its phenotypic, phylogenetic and chemotaxonomic characterization, strain LAM1030 is suggested to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is LAM1030 ( = ACCC 00698 = JCM 19186).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062711-0
2014-12-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4027.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062711-0&mimeType=html&fmt=ahah

References

  1. Barlaz M. A.. ( 1997;). Microbial studies of landfills and anaerobic refuse decomposition. . In Manual of Environmental Microbiology, pp. 541–557. Edited by Hurst C. J., Knudsen G. R., McInerney M. J., Stetzenbach L. D., Walter M. V... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Bastviken D., Tranvik L. J., Downing J. A., Crill P. M., Enrich-Prast A.. ( 2011;). Freshwater methane emissions offset the continental carbon sink. . Science 331:, 50. [CrossRef][PubMed]
    [Google Scholar]
  3. Battin T. J., Luyssaert S., Kaplan L. A., Aufdenkampe A. K., Richter A., Tranvik L. J.. ( 2009;). The boundless carbon cycle. . Nat Geosci 2:, 598–600. [CrossRef]
    [Google Scholar]
  4. Bryant M. P.. ( 1972;). Commentary on the Hungate technique for culture of anaerobic bacteria. . Am J Clin Nutr 25:, 1324–1328.[PubMed]
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Drake H. L., Gößner A. S., Daniel S. L.. ( 2008;). Old acetogens, new light. . Ann N Y Acad Sci 1125:, 100–128. [CrossRef][PubMed]
    [Google Scholar]
  7. Fang M. X., Zhang W. W., Zhang Y. Z., Tan H. Q., Zhang X. Q., Wu M., Zhu X. F.. ( 2012;). Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. . Int J Syst Evol Microbiol 62:, 3018–3023. [CrossRef][PubMed]
    [Google Scholar]
  8. Fontaine F. E., Peterson W. H., McCoy E., Johnson M. J., Ritter G. J.. ( 1942;). A new type of glucose fermentation by Clostridium thermoaceticum n. sp.. J Bacteriol 43:, 701–715.[PubMed]
    [Google Scholar]
  9. Hernández-Eugenio G., Fardeau M. L., Cayol J. L., Patel B. K., Thomas P., Macarie H., Garcia J. L., Ollivier B.. ( 2002;). Clostridium thiosulfatireducens sp. nov., a proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor. . Int J Syst Evol Microbiol 52:, 1461–1468. [CrossRef][PubMed]
    [Google Scholar]
  10. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  11. Ibba M., Fynn G. H.. ( 1991;). Two stage methanogenesis of glucose by Acetogenium kivui and acetoclastic methanogenic sp.. Biotechnol Lett 13:, 671–676. [CrossRef]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  15. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  16. Mah R. A., Ward D. M., Baresi L., Glass T. L.. ( 1977;). Biogenesis of methane. . Annu Rev Microbiol 31:, 309–341. [CrossRef][PubMed]
    [Google Scholar]
  17. McInerney M. J., Bryant M. P.. ( 1981;). Basic principles of bioconversions in anaerobic digestion and methanogenesis. . In Biomass Conversion Processes for Energy and Fuels, pp. 277–296. Edited by Sofer S. S., Zaborsky O. R... New York:: Plenum Press;. [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Ramamoorthy S., Sass H., Langner H., Schumann P., Kroppenstedt R. M., Spring S., Overmann J., Rosenzweig R. F.. ( 2006;). Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. . Int J Syst Evol Microbiol 56:, 2729–2736. [CrossRef][PubMed]
    [Google Scholar]
  20. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B.. ( 2014;). Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia. . Int J Syst Evol Microbiol 64:, 518–521. [CrossRef][PubMed]
    [Google Scholar]
  21. Sallam A., Steinbüchel A.. ( 2009;). Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment. . Int J Syst Evol Microbiol 59:, 1661–1665. [CrossRef][PubMed]
    [Google Scholar]
  22. Steer T., Collins M. D., Gibson G. R., Hippe H., Lawson P. A.. ( 2001;). Clostridium hathewayi sp. nov., from human faeces. . Syst Appl Microbiol 24:, 353–357. [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  24. Thabet O. B., Fardeau M. L., Joulian C., Thomas P., Hamdi M., Garcia J. L., Ollivier B.. ( 2004;). Clostridium tunisiense sp. nov., a new proteolytic, sulfur-reducing bacterium isolated from an olive mill wastewater contaminated by phosphogypse. . Anaerobe 10:, 185–190. [CrossRef][PubMed]
    [Google Scholar]
  25. Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R.. ( 2008;). Methanogenic archaea: ecologically relevant differences in energy conservation. . Nat Rev Microbiol 6:, 579–591. [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  27. Wiegel J.. ( 1994;). Acetate and the potential of homoacetogenic bacteria for industrial applications. . In Acetogenesis, pp. 484–504. Edited by Drake H. L... New York:: Chapman & Hall;. [CrossRef]
    [Google Scholar]
  28. Xu X. W., Huo Y. Y., Wang C. S., Oren A., Cui H. L., Vedler E., Wu M.. ( 2011;). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. . Int J Syst Evol Microbiol 61:, 1817–1822. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhu H. H., Guo J. H., Chen M. B., Feng G. D., Yao Q.. ( 2012;). Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China. . PLoS ONE 7:, e50225. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062711-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062711-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error