1887

Abstract

A novel actinomycete strain, designated YIM M13705, was isolated from a marine sediment sample of the South China Sea and its characteristics were determined by a polyphasic approach. The slowly growing, Gram-stain-positive, aerobic strain produced branched substrate mycelium and aerial hyphae, and no diffusible pigment was produced on the media tested. At maturity, spore chains were formed on aerial hyphae and substrate mycelium was not fragmented. Whole-cell hydrolysates of the strain contained -diaminopimelic acid and galactose, glucose, ribose and rhamnose. The predominant menaquinones were MK-9(H) and MK-10(H). The polar lipids detected were diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and ninhydrin-positive phosphoglycolipids. The major fatty acid was iso-C. The GC content of the genomic DNA was 68.2  mol%. On the basis of 16S rRNA gene sequence, the strain was shown to be most closely related to species of the genus . DNA–DNA hybridization relatedness values (<70 %) of the isolate with its closest neighbour QAIII60 supported classification of the isolate as a representative of a novel species. On the basis of phylogenetic analysis, and phenotypic and genotypic data, it is concluded that the new isolate belongs to a novel species of the genus , for which the name sp. nov. (type strain YIM M13705 = DSM 45939 = BCRC 16956) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062638-0
2014-08-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2834.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062638-0&mimeType=html&fmt=ahah

References

  1. Ara I., Tsetseg B., Daram D., Suto M., Ando K.. ( 2011;). Actinophytocola burenkhanensis sp. nov., isolated from Mongolian soil. . Int J Syst Evol Microbiol 61:, 1033–1038. [CrossRef][PubMed]
    [Google Scholar]
  2. Athalye M., Goodfellow M., Lacey J., White R. P.. ( 1985;). Numerical classification of Actinomadura and Nocardiopsis. . Int J Syst Bacteriol 35:, 86–98. [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Bacteriol 48:, 459–470. [CrossRef]
    [Google Scholar]
  4. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S.-L., Miura H., Matsui K., Yabuuchi E.. ( 1988;). Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. . J Clin Microbiol 26:, 1708–1713.[PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Goodfellow M.. ( 1971;). Numerical taxonomy of some nocardioform bacteria. . J Gen Microbiol 69:, 33–80. [CrossRef][PubMed]
    [Google Scholar]
  11. Guo X., Qiu D., Ruan J., Huang Y.. ( 2011;). Actinophytocola xinjiangensis sp. nov., isolated from virgin forest soil. . Int J Syst Evol Microbiol 61:, 2928–2932. [CrossRef][PubMed]
    [Google Scholar]
  12. Indananda C., Matsumoto A., Inahashi Y., Takahashi Y., Duangmal K., Thamchaipenet A.. ( 2010;). Actinophytocola oryzae gen. nov., sp. nov., isolated from the roots of Thai glutinous rice plants, a new member of the family Pseudonocardiaceae. . Int J Syst Evol Microbiol 60:, 1141–1146. [CrossRef][PubMed]
    [Google Scholar]
  13. Kawato N., Shinobu R.. ( 1959;). On Streptomyces herbaricolor sp. nov., supplement: a simple technique for microscopical observation. . Mem Osaka Univ Lib Arts Educ B Nat Sci 8:, 114–119.
    [Google Scholar]
  14. Kelly K. L.. ( 1964;). Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Bacteriol 47:, 87–95. [CrossRef]
    [Google Scholar]
  20. Otoguro M., Yamamura H., Tamura T., Irzaldi R., Ratnakomala S., Ridwan R., Kartina G., Triana E., Nurkanto A.. & other authors ( 2011;). Actinophytocola timorensis sp. nov. and Actinophytocola corallina sp. nov., isolated from soil. . Int J Syst Evol Microbiol 61:, 834–838. [CrossRef][PubMed]
    [Google Scholar]
  21. Pridham T. G., Gottlieb D.. ( 1948;). The utilization of carbon compounds by some Actinomycetales as an aid for species determination. . J Bacteriol 56:, 107–114.[PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  24. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  25. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  26. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. . J Appl Bacteriol 54:, 31–36. [CrossRef]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  28. Tang S.-K., Wang Y., Chen Y., Lou K., Cao L.-L., Xu L.-H., Li W.-J.. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. . Int J Syst Evol Microbiol 59:, 2025–2032. [CrossRef][PubMed]
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  31. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  32. Zhang D. F., Chen X., Zhang X. M., Zhi X. Y., Yao J. C., Jiang Y., Xiong Z., Li W. J.. ( 2013;). Mycobacterium sediminis sp. nov. and Mycobacterium arabiense sp. nov., two rapidly growing members of the genus Mycobacterium. . Int J Syst Evol Microbiol 63:, 4081–4086. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062638-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062638-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error