1887

Abstract

An obligately anaerobic, psychrophilic spirochaete, strain MO-SPC1, was isolated from a methanogenic microbial community grown in a continuous-flow bioreactor. Originally, this community was obtained from subseafloor sediments off the Shimokita Peninsula of Japan in the north-western Pacific Ocean. The cells were motile, Gram-stain-negative, helical, 0.25–0.55×3.6–15 µm, with a wavelength of approximately 0.5–0.6 µm. Strain MO-SPC1 grew at 0–18 °C (optimally at 15 °C), at pH 6.0–7.5 (optimally at pH 6.8–7.0) and in 20–70 g NaCl l (optimally at 30–40 NaCl l). The strain grew chemo-organotrophically with mono-, di- and polysaccharides. The major end products of glucose fermentation were acetate, ethanol, hydrogen and carbon dioxide. The abundant polar lipids of strain MO-SPC1 were diphosphatidylglycerol, phosphatidylglycerol, unknown phospholipids and an unknown lipid. The major cellular fatty acids (>5 % of the total) were C, C, iso-C, iso-C, iso-C, anteiso-C and anteiso-C. To the best of our knowledge, this is the first report of the fatty acids iso-C and anteiso-C from a species of the genus . Isoprenoid quinones were not found. The G+C content of the genomic DNA was 39.8 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that strain MO-SPC1 was affiliated with the genus , and its closest relatives were MA-2 (95.6 % sequence identity) and R1 (89.4 %). Based on its phenotypic characteristics and phylogenetic traits, strain MO-SPC1 is placed in a separate taxon at the level of a novel species within the genus , for which the name sp. nov. is proposed, reflecting its true psychrophilic physiology. The type strain is MO-SPC1 ( = JCM 17280 = DSM 23951). To our knowledge, this is the first report of an isolate of the phylum from a deep-sea sedimentary environment, and of an obligately psychrophilic nature.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062463-0
2014-08-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2798.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062463-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A.. ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. New York:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  2. Beal E. J., House C. H., Orphan V. J.. ( 2009;). Manganese- and iron-dependent marine methane oxidation. . Science 325:, 184–187. [CrossRef][PubMed]
    [Google Scholar]
  3. Breznak J. A., Canale-Parola E.. ( 1975;). Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. . Arch Microbiol 105:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  4. Canale-Parola E.. ( 1984;). Genus I. Spirochaeta Ehrenberg 1835, 313AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 39–46. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  5. Chintalapati S., Kiran M. D., Shivaji S.. ( 2004;). Role of membrane lipid fatty acids in cold adaptation. . Cell Mol Biol (Noisy-le-Grand) 50:, 631–642.[PubMed]
    [Google Scholar]
  6. Christie W. W.. ( 1997;). Structural analysis of fatty acids. . In Advances in Lipid Methodology, vol. 4, pp. 119–169. Edited by Christie W. W... Dundee:: Oily Press;. [CrossRef]
    [Google Scholar]
  7. D’Amico S., Collins T., Marx J.-C., Feller G., Gerday C.. ( 2006;). Psychrophilic microorganisms: challenges for life. . EMBO Rep 7:, 385–389. [CrossRef][PubMed]
    [Google Scholar]
  8. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  9. Ehrenberg C. G.. ( 1835;). Dritter Beitrag zur Erkenntniss grosser Organisation in der Richtung des kleinsten Raumes. . Abh Preuss Akad Wiss Berlin 1833–1835:, 143–336 (in German).
    [Google Scholar]
  10. Harwood C. S., Canale-Parola E.. ( 1983;). Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. . Int J Syst Bacteriol 33:, 573–579. [CrossRef]
    [Google Scholar]
  11. Hespell R. B., Canale-Parola E.. ( 1970;). Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. . Arch Microbiol 74:, 1–18.
    [Google Scholar]
  12. Imachi H., Sakai S., Hirayama H., Nakagawa S., Nunoura T., Takai K., Horikoshi K.. ( 2008;). Exilispira thermophila gen. nov., sp. nov., an anaerobic, thermophilic spirochaete isolated from a deep-sea hydrothermal vent chimney. . Int J Syst Evol Microbiol 58:, 2258–2265. [CrossRef][PubMed]
    [Google Scholar]
  13. Imachi H., Sakai S., Nagai H., Yamaguchi T., Takai K.. ( 2009;). Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field. . Int J Syst Evol Microbiol 59:, 800–805. [CrossRef][PubMed]
    [Google Scholar]
  14. Imachi H., Aoi K., Tasumi E., Saito Y., Yamanaka Y., Saito Y., Yamaguchi T., Tomaru H., Takeuchi R.. & other authors ( 2011;). Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor. . ISME J 5:, 1913–1925. [CrossRef][PubMed]
    [Google Scholar]
  15. Inagaki F., Nakagawa S.. ( 2008;). Spatial distribution of the subseafloor life: diversity and biogeography. . In Links Between Geological Processes, Microbial Activities and Evolution of Life, pp. 135–158. Edited by Dilek Y., Furnes H., Muehlenbachs K... Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  16. Inagaki F., Nunoura T., Nakagawa S., Teske A., Lever M., Lauer A., Suzuki M., Takai K., Delwiche M.. & other authors ( 2006;). Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. . Proc Natl Acad Sci U S A 103:, 2815–2820. [CrossRef][PubMed]
    [Google Scholar]
  17. Kato C., Nogi Y., Arakawa S.. ( 2008;). Isolation, cultivation, and diversity of deep-sea piezophiles. . In High-Pressure Microbiology, pp. 203–217. Edited by Michiels C., Bartlett D. H., Aertsen A... Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  18. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  19. Könneke M., Widdel F.. ( 2003;). Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. . Environ Microbiol 5:, 1064–1070. [CrossRef][PubMed]
    [Google Scholar]
  20. Leschine S., Paster B. J.. ( 2010;). Genus I. Spirochaeta Ehrenberg 1835, 313AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 473–484. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  21. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  22. MIDI ( 1999;). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  23. Mills H. J., Reese B. K., Shepard A. K., Riedinger N., Dowd S. E., Morono Y., Inagaki F.. ( 2012;). Characterization of metabolically active bacterial populations in subseafloor Nankai Trough sediments above, within, and below the sulfate–methane transition zone. . Front Microbiol 3:, 113. [CrossRef][PubMed]
    [Google Scholar]
  24. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for extracting bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  25. Norris S. J., Paster B. J., Smibert R. M.. ( 2010;). Genus IV. Treponema Schaudinn 1905, 1728AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 501–531. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  26. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Krader P.. ( 2009;). Spirochaeta dissipatitropha sp. nov., an alkaliphilic, obligately anaerobic bacterium, and emended description of the genus Spirochaeta Ehrenberg 1835. . Int J Syst Evol Microbiol 59:, 1798–1804. [CrossRef][PubMed]
    [Google Scholar]
  27. Russell N. J.. ( 1997;). Psychrophilic bacteria – molecular adaptations of membrane lipids. . Comp Biochem Physiol A Physiol 118:, 489–493. [CrossRef][PubMed]
    [Google Scholar]
  28. Stanton T. B.. ( 2010;). Genus I. Brachyspira Hovind-Hougen, Birch-Anderson, Henrik-Nielsen, Orholm, Pedersen, Teglbjaerg and Thaysen 1983, 896VP. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 531–544. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  29. Takai K., Abe M., Miyazaki M., Koide O., Nunoura T., Imachi H., Inagaki F., Kobayashi T.. ( 2013;). Sunxiuqinia faeciviva sp. nov., a facultatively anaerobic organoheterotroph of the Bacteroidetes isolated from deep subseafloor sediment. . Int J Syst Evol Microbiol 63:, 1602–1609. [CrossRef][PubMed]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Yanagibayashi M., Nogi Y., Li L., Kato C.. ( 1999;). Changes in the microbial community in Japan Trench sediment from a depth of 6292 m during cultivation without decompression. . FEMS Microbiol Lett 170:, 271–279. [CrossRef][PubMed]
    [Google Scholar]
  32. Zillig W., Holz I., Janekovic D., Klenk H.-P., Imsel E., Trent J., Wunderl S., Forjaz V. H., Coutinho R., Ferreira T.. ( 1990;). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. . J Bacteriol 172:, 3959–3965.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062463-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062463-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error