1887

Abstract

Strain MUSC 115 was isolated from mangrove soil of the Tanjung Lumpur river in the state of Pahang, Peninsular Malaysia. Cells of this strain stained Gram-positive and were non-spore-forming, short rods that formed yellowish-white colonies on different agar media. The taxonomy of strain MUSC 115 was studied by a polyphasic approach, and the organism showed a range of phylogenetic and chemotaxonomic properties consistent with those of the genus . The cell-wall peptidoglycan was of type B2β, containing the amino acids ornithine, alanine, glycine, glutamic acid and homoserine. The muramic acid was of the -glycolyl form. The predominant menaquinones detected were MK-12, MK-13 and MK-11. The polar lipids consisted of phosphatidylglycerol, phosphoglycolipid, diphosphatidylglycerol, two unidentified lipids, three unidentified phospholipids and four unidentified glycolipids. The major fatty acids of the cell membrane were anteiso-C and anteiso-C. The whole-cell sugars detected were ribose, glucose, mannose and galactose. Based on the 16S rRNA gene sequence, strain MUSC 115 showed the highest sequence similarity to SK 18 (98.1 %), XIL02 (97.8 %) and DSM 20754 (97.5 %) and lower sequence similarity to strains of other species of the genus . DNA–DNA hybridization experiments revealed a low level of DNA–DNA relatedness (less than 24 %) between strain MUSC 115 and the type strains of closely related species. Furthermore, BOX-PCR fingerprint comparison also indicated that strain MUSC 115 represented a unique DNA profile. The DNA G+C content determined was 70.9±0.7 mol%, which is lower than that of SK 18. Based on the combination of genotypic and phenotypic data, it is proposed that strain MUSC 115 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MUSC 115 ( = MCCC 1K00251 = DSM 28240 = NBRC 110089).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062414-0
2014-10-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3513.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062414-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M.. ( 1993;). Handbook of Microbiological Media. Edited by Parks L. C... Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  2. Carrillo P. G., Mardaraz C., Pitta-Alvarez S. I., Giulietti A. M.. ( 1996;). Isolation and selection of biosurfactant-producing bacteria. . World J Microbiol Biotechnol 12:, 82–84. [CrossRef][PubMed]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  4. Cerny G.. ( 1978;). Studies on aminopeptidase for the distinction of Gram-negative from Gram-positive bacteria. . Eur J Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  5. Collins M. D., Bradbury J. F.. ( 1992;). The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium. . In The Prokaryotes, , 2nd edn., pp. 1355–1368. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... Berlin:: Springer;.
    [Google Scholar]
  6. Collins M. D., Jones D., Kroppenstedt R. M.. ( 1983;). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  7. Dastager S. G., Lee J.-C., Ju Y.-J., Park D.-J., Kim C.-J.. ( 2008;). Microbacterium kribbense sp. nov., isolated from soil. . Int J Syst Evol Microbiol 58:, 2536–2540. [CrossRef][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–789. [CrossRef]
    [Google Scholar]
  11. Hong K., Gao A. H., Xie Q. Y., Gao H., Zhuang L., Lin H. P., Yu H. P., Li J., Yao X. S. et al. ( 2009;). Actinomycetes for marine drug discovery isolated from mangrove soils and plants in China. . Mar Drugs 7:, 24–44. [CrossRef][PubMed]
    [Google Scholar]
  12. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  13. Kates M.. ( 1986;). Techniques of Lipidology, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  14. Kelly K. L.. ( 1964;). Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  16. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  17. Krishnamurthi S., Bhattacharya A., Schumann P., Dastager S. G., Tang S.-K., Li W.-J., Chakrabarti T.. ( 2012;). Microbacterium immunditiarum sp. nov., an actinobacterium isolated from landfill surface soil, and emended description of the genus Microbacterium. . Int J Syst Evol Microbiol 62:, 2187–2193. [CrossRef][PubMed]
    [Google Scholar]
  18. Küster E., Williams S. T.. ( 1964;). Selection of media for isolation of streptomycetes. . Nature 202:, 928–929. [CrossRef][PubMed]
    [Google Scholar]
  19. MacFaddin J. F.. ( 2000;). Biochemical Tests for Identification of Medical Bacteria, , 3rd edn.. Baltimore:: Lippincott, Williams & Wilkins;.
    [Google Scholar]
  20. Madhaiyan M., Poonguzhali S., Lee J.-S., Lee K.-C., Saravanan V. S., Santhanakrishnan P.. ( 2010;). Microbacterium azadirachtae sp. nov., a plant-growth-promoting actinobacterium isolated from the rhizoplane of neem seedlings. . Int J Syst Evol Microbiol 60:, 1687–1692. [CrossRef][PubMed]
    [Google Scholar]
  21. Meena B., Rajan L. A., Vinithkumar N. V., Kirubagaran R.. ( 2013;). Novel marine actinobacteria from emerald Andaman & Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. . BMC Microbiol 13:, 145. [CrossRef][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  23. Orla-Jensen S.. ( 1919;). The Lactic Acid Bacteria. Copenhagen:: Høst and Son;.
    [Google Scholar]
  24. Richert K., Brambilla E., Stackebrandt E.. ( 2007;). The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes. . Syst Appl Microbiol 30:, 102–108. [CrossRef][PubMed]
    [Google Scholar]
  25. Rivas R., Trujillo M. E., Sánchez M., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2004;). Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. . Int J Syst Evol Microbiol 54:, 513–517. [CrossRef][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  27. Sasser M..( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  28. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  29. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  30. Schumann P., Rainey F. A., Burghardt J., Stackebrandt E., Weiss N.. ( 1999;). Reclassification of Brevibacterium oxydans (Chatelain and Second 1966) as Microbacterium oxydans comb. nov.. Int J Syst Bacteriol 49:, 175–177. [CrossRef][PubMed]
    [Google Scholar]
  31. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H.. ( 2003;). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53:, 479–484. [CrossRef][PubMed]
    [Google Scholar]
  32. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  34. Takahashi Y., Matsumoto A., Seino A., Iwai Y., Ōmura S.. ( 1996;). Rare actinomycetes isolated from desert soils. . Actinomycetologica 10:, 91–97. [CrossRef]
    [Google Scholar]
  35. Takeuchi M., Hatano K.. ( 1998;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:, 739–747. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  37. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  38. Uchida K., Aida A.. ( 1977;). Acyl type of bacterial cell wall: its simple identification by colorimetric method. . J Gen Appl Microbiol 23:, 249–260. [CrossRef]
    [Google Scholar]
  39. Versalovic J., Koeuth T., Lupski J. R.. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. . Nucleic Acids Res 19:, 6823–6831. [CrossRef][PubMed]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062414-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062414-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error