1887

Abstract

A novel nitrite-oxidizing bacterium (NOB), strain Lb, was isolated from a nitrifying bioreactor with a high loading of ammonium bicarbonate in a mineral medium with nitrite as the energy source. The cells were oval (lancet-shaped) rods with pointed edges, non-motile, Gram-positive (by staining and from the cell wall structure) and non-spore-forming. Strain Lb was an obligately aerobic, chemolitoautotrophic NOB, utilizing nitrite or formate as the energy source and CO as the carbon source. Ammonium served as the only source of assimilated nitrogen. Growth with nitrite was optimal at pH 6.8–7.5 and at 40 °C (maximum 46 °C). The membrane lipids consisted of C alkyl 1,2-diols with the dominant fatty acids being 10MeC and C. The peptidoglycan lacked -DAP but contained ornithine and lysine. The dominant lipoquinone was MK-8. Phylogenetic analyses of the 16s rRNA gene sequence placed strain Lb into the class of the phylum with as the closest relative. On the basis of physiological and phylogenetic data, it is proposed that strain Lb represents a novel species of a new genus, with the suggested name gen. nov., sp. nov. The type strain of the type species is Lb ( = DSM 23161 = UNIQEM U798).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.062232-0
2014-06-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1859.html?itemId=/content/journal/ijsem/10.1099/ijs.0.062232-0&mimeType=html&fmt=ahah

References

  1. Alawi M. , Lipski A. , Sanders T. , Pfeiffer E.-M. , Spieck E. . ( 2007; ). Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. . ISME J 1:, 256–264. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhandari B. , Simlat M. M. . ( 1986; ). Rapid micro-method for determination of nitrate in presence of nitrite for biochemical studies. . Indian J Exp Biol 24:, 323–325.
    [Google Scholar]
  3. Bock E. , Koops H-P. , Möller U. C. , Rudert M. . ( 1990; ). A new facultatively nitrite oxidizing bacterium, Nitrobacter vulgaris sp. nov.. Arch Microbiol 153:, 105–110. [CrossRef]
    [Google Scholar]
  4. Daims H. , Nielsen J. L. , Nielsen P. H. , Schleifer K. H. , Wagner M. . ( 2001; ). In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. . Appl Environ Microbiol 67:, 5273–5284. [CrossRef] [PubMed]
    [Google Scholar]
  5. Demharter W. , Hensel R. , Smida J. , Stackebrandt E. . ( 1989; ). Sphaerobacter thermophilus gen. nov., sp. nov., a deeply rooting member of the Actinomycetes subdivision isolated from thermophilically treated sewage sludge. . Syst Appl Microbiol 11:, 261–266. [CrossRef]
    [Google Scholar]
  6. Griess-Romijn van Eck E. . ( 1966; ). Physiological and chemical tests for drinking water. NEN 504 1056 IV-2 Nederlands Normalisatie Instituut. The Netherlands:: Rijswijk;.
    [Google Scholar]
  7. Hanada S. , Pierson B. K. . ( 2006; ). The Family Chloroflexaceae . . Prokaryotes 7:, 815–842.[CrossRef]
    [Google Scholar]
  8. Hasegawa T. , Takizawa M. , Tanida S. . ( 1983; ). A rapid analysis for chemical grouping of aerobic Actinomycetes. . J Gen Appl Microbiol 29:, 319–322.[CrossRef]
    [Google Scholar]
  9. Hugenholtz P. , Stackebrandt E. . ( 2004; ). Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). . Int J Syst Evol Microbiol 54:, 2049–2051. [CrossRef] [PubMed]
    [Google Scholar]
  10. Kulichevskaya I. S. , Kostina L. A. , Valášková V. , Rijpstra W. I. C. , Sinninghe Damsté J. S. , de Boer W. , Dedysh S. N. . ( 2012; ). Acidicapsa borealis gen. nov., sp. nov. and Acidicapsa ligni sp. nov., subdivision 1 Acidobacteria from Sphagnum peat and decaying wood. . Int J Syst Evol Microbiol 62:, 1512–1520. [CrossRef]
    [Google Scholar]
  11. Lowry O. H. , Rosebrough N. J. , Farr A. L. , Randall R. J. . ( 1951; ). Protein measurement with the Folin phenol reagent. . J Biol Chem 193:, 265–275.[PubMed]
    [Google Scholar]
  12. Lücker S. , Nowka B. , Rattei T. , Spieck E. , Daims H. . ( 2013; ). The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. . Front Microbiol 4:, 27. [CrossRef] [PubMed]
    [Google Scholar]
  13. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  14. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  15. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  16. Pfennig N. , Lippert K. D. . ( 1966; ). Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. . Arch Mikrobiol 55:, 245–256. [CrossRef]
    [Google Scholar]
  17. Pond J. L. , Langworthy T. A. . ( 1987; ). Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum . . J Bacteriol 169:, 1328–1330.[PubMed]
    [Google Scholar]
  18. Pond J. L. , Langworthy T. A. , Holzer G. . ( 1986; ). Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. . Science 231:, 1134–1136. [CrossRef] [PubMed]
    [Google Scholar]
  19. Ronquist F. , Huelsenbeck J. P. . ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinformatics 19:, 1572–1574. [CrossRef]
    [Google Scholar]
  20. Schleifer K. H. , Kandler O. . ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477. [CrossRef] [PubMed]
    [Google Scholar]
  21. Schmidt H. A. , Petzold E. , Vingron M. , von Haeseler A. . ( 2003; ). Molecular phylogenetics: parallelized parameter estimation and quartet puzzling. . J Parallel Distrib Comput 63:, 719–727. [CrossRef]
    [Google Scholar]
  22. Sorokin D. Y. , Lücker S. , Vejmelkova D. , Kostrikina N. A. , Kleerbezem R. , Rijpstra W. A. C. , Sinninghe Damsté J. S. , Le Paslier D. , Muyzer G. , Wagner M. , van Loosdrecht M. C. M. , Daims H. . ( 2012; ). Nitrification expanded: Discovery, physiology, and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi . . ISME J 6:, 2245–2256.[CrossRef]
    [Google Scholar]
  23. Spieck E. , Bock E. . ( 2005; ). The lithoautotrophic nitrite-oxidizing bacteria. . In Bergey's Manual of Systematic Bacteriology, vol. 2, , 2nd edn., pp. 149–153. Edited by Garrity G. M. , Brenner D. J. , Krieg N. R. , Staley J. T. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  24. Spieck E. , Lipski A. . ( 2011; ). Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. . Methods Enzymol 486:, 109–130. [CrossRef] [PubMed]
    [Google Scholar]
  25. Stamatakis A. , Ludwig T. , Meier H. . ( 2005; ). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. . Bioinformatics 21:, 456–463. [CrossRef] [PubMed]
    [Google Scholar]
  26. Streshinskaya G. M. , Naumova I. B. , Panina L. I. . ( 1979; ). [ Chemical composition of the cell wall of Streptomyces chrysomallus which produces the antibiotic aurantin. ]. Mikrobiologiia 48:, 814–819 (in Russian).[PubMed]
    [Google Scholar]
  27. Van Gool A. , Laudelout H. . ( 1966; ). Formate utilization by Nitrobacter winogradskyi . . Biochim Biophys Acta 127:, 295–301. [CrossRef] [PubMed]
    [Google Scholar]
  28. van ver Meer M. T. , Schouten S. , Hanada S. , Hopmans E. C. , Damsté J. S. , Ward D. M. . ( 2002; ). Alkane-1,2-diol-based glycosides and fatty glycosides and wax esters in Roseiflexus castenholzii and hot spring microbial mats. . Arch Microbiol 178:, 229–237. [CrossRef] [PubMed]
    [Google Scholar]
  29. Vejmelkova D. , Sorokin D. Y. , Abbas B. , Kovaleva O. L. , Kleerebezem R. , Kampschreur M. J. , Muyzer G. , van Loosdrecht M. C. . ( 2012; ). Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading. . Appl Microbiol Biotechnol 93:, 401–410. [CrossRef] [PubMed]
    [Google Scholar]
  30. Wait R. , Carreto L. , Nobre M. F. , Ferreira A. M. , da Costa M. S. . ( 1997; ). Characterization of novel long-chain 1,2-diols in Thermus species and demonstration that Thermus strains contain both glycerol-linked and diol-linked glycolipids. . J Bacteriol 179:, 6154–6162.[PubMed]
    [Google Scholar]
  31. Watson S. W. , Waterbury J. B. . ( 1971; ). Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis, nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp.. Arch Mikrobiol 77:, 203–230. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.062232-0
Loading
/content/journal/ijsem/10.1099/ijs.0.062232-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error