1887

Abstract

Two actinomycete strains, designated TRM 49117 and TRM 49136, were isolated from a hypersaline habitat in Xinjiang Province, north-west China and were characterized taxonomically by using a polyphasic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain TRM 49117 had 93.93 % similarity with the type strain TRM 40137 (GenBank accession no. HQ651156) and TRM 49136 had 94.32 % similarity with TRM 40137. The 16S rRNA gene sequence similarity between the two new isolates was 93 %. The isolates contained -diaminopimelic acid as the diagnostic diamino acid and anteiso-C, iso-C and anteiso-C as major cellular fatty acids. The predominant menaquinones of the isolates were MK-9(H4) and MK-9(H6). The whole-cell sugar patterns of these strains contained xylose and ribose, and strain TRM 49136 also contained arabinose. The polar lipid pattern of strain TRM 49117 comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol mannosides, phosphatidylcholine, phosphatidylinositol and three additional unknown phospholipids. The polar lipid pattern of strain TRM 49136 comprised phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, glycolipids and two phosphoglycolipids of unknown composition. Genotypic and phenotypic data confirmed that strains TRM 49117 and TRM 49136 represent two novel species, clearly different from related species of the genus Glycomyces, for which the names sp. nov. (type strain TRM 49117 = CCTCC AA 2013003 = NRRL B-59998 = KACC 17682) and sp. nov. (type strain TRM 49136 = CCTCC AA 2013004 = NRRL B-24927 = KACC 17681) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061788-0
2014-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2437.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061788-0&mimeType=html&fmt=ahah

References

  1. Buck J. D.. ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. . Appl Environ Microbiol 44:, 992–993.[PubMed]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  3. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L.. ( 2001;). Streptimonospora salina gen. nov., sp. nov., a new member of the family Nocardiopsaceae. . Int J Syst Evol Microbiol 51:, 357–363.[PubMed]
    [Google Scholar]
  4. Evtushenko L. I., Taptykova S. D., Akimov V. N., Semyonova S. A., Kalakoutskii L. V.. ( 1991;). Glycomyces tenuis sp. nov.. Int J Syst Bacteriol 41:, 154–157. [CrossRef]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Gordon R. E., Barnett D. A., Handerhan J. E., Pang C. H. N.. ( 1974;). Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. . Int J Syst Bacteriol 24:, 54–63. [CrossRef]
    [Google Scholar]
  7. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K.. ( 1997;). Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. . Int J Syst Bacteriol 47:, 1129–1133. [CrossRef][PubMed]
    [Google Scholar]
  8. Gu Q., Zheng W., Huang Y.. ( 2007;). Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall. . Int J Syst Evol Microbiol 57:, 1995–1998. [CrossRef][PubMed]
    [Google Scholar]
  9. Guan T. W., Wu J., Tang S. K., Xu L. H., Li W. J., Zhang L. L.. ( 2008;). Phylogenetic diversity of halophilic actinomycetes from hypersaline environments in Tarim basin of Xinjiang, China. . Microbiology China 35:, 1698–1702.
    [Google Scholar]
  10. Guan T. W., Xia Z. F., Xiao J., Wu N., Chen Z. J., Zhang L. L., Zhang X. P.. ( 2011;). Glycomyces halotolerans sp. nov., a novel actinomycete isolated from a hypersaline habitat in Xinjiang, China. . Antonie van Leeuwenhoek 100:, 137–143. [CrossRef][PubMed]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  12. Kelly K. L.. ( 1964;). Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors. Washington, DC:: US Government Printing Office;.
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Labeda D. P., Kroppenstedt R. M.. ( 2004;). Emended description of the genus Glycomyces and description of Glycomyces algeriensis sp. nov., Glycomyces arizonensis sp. nov. and Glycomyces lechevalierae sp. nov.. Int J Syst Evol Microbiol 54:, 2343–2346. [CrossRef][PubMed]
    [Google Scholar]
  15. Labeda D. P., Testa R. T., Lechevalier M. P., Lechevalier H. A.. ( 1985;). Glycomyces, a new genus of the Actinomycetales. . Int J Syst Bacteriol 35:, 417–421. [CrossRef]
    [Google Scholar]
  16. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  17. Qin S., Wang H. B., Chen H. H., Zhang Y. Q., Jiang C. L., Xu L. H., Li W. J.. ( 2008;). Glycomyces endophyticus sp. nov., an endophytic actinomycete isolated from the root of Carex baccans Nees. . Int J Syst Evol Microbiol 58:, 2525–2528. [CrossRef][PubMed]
    [Google Scholar]
  18. Qin S., Chen H. H., Klenk H. P., Zhao G. Z., Li J., Xu L. H., Li W. J.. ( 2009;). Glycomyces scopariae sp. nov. and Glycomyces mayteni sp. nov., isolated from medicinal plants in China. . Int J Syst Evol Microbiol 59:, 1023–1027. [CrossRef][PubMed]
    [Google Scholar]
  19. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  20. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov. . Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  21. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  22. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061788-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061788-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error