1887

Abstract

A Gram-stain-positive, aerobic, non-motile, rod-shaped bacterium, strain 0704C9-2, was isolated from hydrothermal sediment of the Indian Ocean. The organism grew with 0–5 % (w/v) NaCl and at 10–37 °C, with optimal growth occurring with 1 % NaCl and at 28–30 °C. Comparative 16S rRNA gene sequence analysis revealed that strain 0704C9-2 belonged to the genus . It exhibited highest 16S rRNA gene sequence similarity with DSM 20166 (98.4 %). Levels of similarity with the type strains of all other recognized species of the genus were less than 98.0 %. DNA–DNA hybridization experiments with strain 0704C9-2 and its closest relative, DSM 20166, revealed a low reassociation value of 42.9 %. The DNA G+C content of strain 0704C9-2 was 73.3 mol%. The cell-wall peptidoglycan contained ornithine and the acyl type was glycolyl. The major whole-cell sugars were mannose, galactose, rhamnose and glucose. The major cellular fatty acids were anteiso-C, anteiso-C, iso-C and iso-C. The predominant menaquinones were MK-11, MK-10 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and an unknown phospholipid. On the basis of phenotypic, phylogenetic and genotypic data, strain 0704C9-2 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 0704C9-2 ( = LMG 27542 = CGMCC 1.12512).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061697-0
2014-10-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3508.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061697-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P.. ( 2001;). Description of Microbacterium foliorum sp. nov. and Microbacterium phyllosphaerae sp. nov., isolated from the phyllosphere of grasses and the surface litter after mulching the sward, and reclassification of Aureobacterium resistens (Funke et al. 1998) as Microbacterium resistens comb. nov.. Int J Syst Evol Microbiol 51:, 1267–1276.[PubMed]
    [Google Scholar]
  2. Cerny G.. ( 1978;). Studies on the aminopeptidase test for the distinction of Gram-negative from Gram-positive bacteria. . Appl Microbiol Biotechnol 5:, 113–122. [CrossRef]
    [Google Scholar]
  3. Collins M., Jones D.. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. . J Appl Microbiol 48:, 459–470.
    [Google Scholar]
  4. Collins M. D., Jones D., Kroppenstedt R. M.. ( 1983a;). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a redefined genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D., Jones D., Keddie R. M., Kroppenstedt R. M., Schleifer K. H.. ( 1983b;). Classification of some coryneform bacteria in a new genus Aureobacterium. . Syst Appl Microbiol 4:, 236–252. [CrossRef][PubMed]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Funke G., Lawson P. A., Nolte F. S., Weiss N., Collins M. D.. ( 1998;). Aureobacterium resistens sp. nov., exhibiting vancomycin resistance and teicoplanin susceptibility. . FEMS Microbiol Lett 158:, 89–93. [CrossRef][PubMed]
    [Google Scholar]
  11. Gao M., Wang M., Zhang Y. C., Zou X. L., Xie L. Q., Hu H. Y., Xu J., Gao J. L., Sun J. G.. ( 2013;). Microbacterium neimengense sp. nov., isolated from the rhizosphere of maize. . Int J Syst Evol Microbiol 63:, 236–240. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  14. Krishnamurthi S., Bhattacharya A., Schumann P., Dastager S. G., Tang S. K., Li W. J., Chakrabarti T.. ( 2012;). Microbacterium immunditiarum sp. nov., a novel actinobacterium isolated from a landfill surface soil, and emended description of the genus Microbacterium. . Int J Syst Evol Microbiol 62:, 2187–2193. [CrossRef][PubMed]
    [Google Scholar]
  15. Kumari P., Bandyopadhyay S., Das S. K.. ( 2013;). Microbacterium oryzae sp. nov., an actinobacterium isolated from rice field soil. . Int J Syst Evol Microbiol 63:, 2442–2449. [CrossRef][PubMed]
    [Google Scholar]
  16. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  17. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Minnikin D., Collins M., Goodfellow M.. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. . J Appl Microbiol 47:, 87–95.
    [Google Scholar]
  20. Mondani L., Piette L., Christen R., Bachar D., Berthomieu C., Chapon V.. ( 2013;). Microbacterium lemovicicum sp. nov., a bacterium isolated from a natural uranium-rich soil. . Int J Syst Evol Microbiol 63:, 2600–2606. [CrossRef][PubMed]
    [Google Scholar]
  21. Orla-Jensen S.. ( 1919;). The Lactic Acid Bacteria. Copenhagen:: Høst and Son;.
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  24. Takeuchi M., Hatano K.. ( 1998;). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium. . Int J Syst Bacteriol 48:, 739–747. [CrossRef][PubMed]
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  26. Uchida K., Kudo T., Suzuki K. I., Nakase T.. ( 1999;). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. . J Gen Appl Microbiol 45:, 49–56. [CrossRef][PubMed]
    [Google Scholar]
  27. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  28. Xu L. H., Li W. J., Liu Z. H., Jiang C. L.. ( 2007;). Actinomycete Systematics – Principles, Methods and Practice. Beijing:: Science Press;.
    [Google Scholar]
  29. Yokota A., Takeuchi M., Sakane T., Weiss N.. ( 1993;). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov.. Int J Syst Bacteriol 43:, 555–564. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061697-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061697-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error