1887

Abstract

Bacterial strain L6-16 was isolated from . Cells were Gram-stain-negative, rod-shaped and motile with monopolar flagella. The phylogenetic analysis of its nearly complete 16S rRNA gene sequence revealed that strain L6-16 was a member of the genus . Its closest relative was PL-41 with a 16S rRNA gene sequence similarity value of 98.3 %. Sequence similarity analysis of the housekeeping and genes showed low levels of sequence similarity (<93.9 %) between strain L6-16 and other species of the genus Rhizobium. Strain L6-16 was able to grow between pH 5 and 11 (optimum 7.0) and at temperatures ranging from 20 to 41 °C (optimum 30 °C). It tolerated NaCl up to 1 % (w/v) (optimum 0.5 %). Cω7 and/or Cω6 (summed feature 8; 79.5 %) were found as predominant cellular fatty acids. The DNA G+C content of strain L6-16 was 58.1 mol% ( ). Based on low levels of DNA–DNA relatedness, strain L6-16 was distinct from members of phylogenetically related species including PL-41 (38.3±0.8 %), W3 (6.9±0.4 %) and J3-A127 (12.3±0.6 %). Strain L6-16 was unable to nodulate the roots of , and and genes were not detected. The results obtained from phylogenetic analyses, phenotypic characterization and DNA–DNA hybridization indicated that strain L6-16 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is L6-16 ( = NBRC 109339 = BCC 55143).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061622-0
2014-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2455.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061622-0&mimeType=html&fmt=ahah

References

  1. Araújo W. L. , Marcon J. , Maccheroni W. Jr , Van Elsas J. D. , Van Vuurde J. W. , Azevedo J. L. . ( 2002; ). Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. . Appl Environ Microbiol 68:, 4906–4914. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bhattacharjee R. B. , Jourand P. , Chaintreuil C. , Dreyfus B. , Singh A. , Mukhopadhyay S. N. . ( 2012; ). Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. . Biol Fertil Soils 48:, 173–182. [CrossRef]
    [Google Scholar]
  3. Datta C. , Basu P. S. . ( 2000; ). Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan . . Microbiol Res 155:, 123–127. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Frank B. . ( 1889; ). Über die Pilzsymbiose der Leguminosen. . Ber Dtsch Bot Ges 7:, 332–346 (in German).
    [Google Scholar]
  9. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44:, 151–158. [CrossRef]
    [Google Scholar]
  10. Graham P. H. , Parker C. A. . ( 1964; ). Diagnostic features in the characterization of the root-nodule bacteria of legumes. . Plant Soil 20:, 383–396. [CrossRef]
    [Google Scholar]
  11. Islam M. S. , Kawasaki H. , Muramatsu Y. , Nakagawa Y. , Seki T. . ( 2008; ). Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. . Biosci Biotechnol Biochem 72:, 1416–1429. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  13. Kaselitz T. B. , Hariadi N. I. , LiPuma J. J. , Weinberg J. B. . ( 2012; ). Rhizobium radiobacter bacteremia in a neonate. . Infection 40:, 437–439. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kittiwongwattana C. , Thawai C. . ( 2013; ). Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). . Int J Syst Evol Microbiol 63:, 3823–3828. [CrossRef] [PubMed]
    [Google Scholar]
  17. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  18. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  19. Lindström K. , Lehtomäki S. . ( 1988; ). Metabolic properties, maximum growth temperature and phage sensitivity of Rhizobium sp. (Galega) compared with other fast-growing rhizobia. . FEMS Microbiol Lett 50:, 277–287. [CrossRef]
    [Google Scholar]
  20. MacFaddin J. F. . ( 2000; ). Biochemical Tests for Identification of Medical Bacteria, , 3rd edn.. Philadelphia, PA:: Lippincott Williams & Wilkins;.
    [Google Scholar]
  21. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  22. Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008; ). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  23. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  24. Peng G. , Yuan Q. , Li H. , Zhang W. , Tan Z. . ( 2008; ). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . . Int J Syst Evol Microbiol 58:, 2158–2163. [CrossRef] [PubMed]
    [Google Scholar]
  25. Puławska J. , Willems A. , Sobiczewski P. . ( 2012a; ). Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. . Int J Syst Evol Microbiol 62:, 895–899. [CrossRef] [PubMed]
    [Google Scholar]
  26. Puławska J. , Willems A. , De Meyer S. E. , Süle S. . ( 2012b; ). Rhizobium nepotum sp. nov. isolated from tumors on different plant species. . Syst Appl Microbiol 35:, 215–220. [CrossRef] [PubMed]
    [Google Scholar]
  27. Ramana Ch. V. , Parag B. , Girija K. R. , Ram B. R. , Ramana V. V. , Sasikala Ch. . ( 2013; ). Rhizobium subbaraonis sp. nov., an endolithic bacterium isolated from beach sand. . Int J Syst Evol Microbiol 63:, 581–585. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rosenblueth M. , Martínez-Romero E. . ( 2004; ). Rhizobium etli maize populations and their competitiveness for root colonization. . Arch Microbiol 181:, 337–344. [CrossRef] [PubMed]
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  31. Schloter M. , Wiehe W. , Assmus B. , Steindl H. , Becke H. , Höflich G. , Hartmann A. . ( 1997; ). Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. . Appl Environ Microbiol 63:, 2038–2046.[PubMed]
    [Google Scholar]
  32. Skerman V. B. D. . ( 1967; ). A Guide to the Identification of the Genera of Bacteria: with Methods and Digests of Generic Characteristics, , 2nd edn.. Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  33. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  34. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  35. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef] [PubMed]
    [Google Scholar]
  36. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. . ( 2000; ). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef] [PubMed]
    [Google Scholar]
  37. Turdahon M. , Osman G. , Hamdun M. , Yusuf K. , Abdurehim Z. , Abaydulla G. , Abdukerim M. , Fang C. , Rahman E. . ( 2013; ). Rhizobium tarimense sp. nov., isolated from soil in the ancient Khiyik River. . Int J Syst Evol Microbiol 63:, 2424–2429. [CrossRef] [PubMed]
    [Google Scholar]
  38. Verlander C. P. . ( 1992; ). Detection of horseradish peroxidase by colorimetry. . In Nonisotopic DNA Probe Techniques, pp. 185–201. Edited by Kricka L. J. . . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  39. Vincent J. M. . ( 1970; ). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M. . . Oxford:: Blackwell Scientific;.
    [Google Scholar]
  40. Wang W. , Wu Y. , Yan Y. , Ermakova M. , Kerstetter R. , Messing J. . ( 2010; ). DNA barcoding of the Lemnaceae, a family of aquatic monocots. . BMC Plant Biol 10:, 205. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. . & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  42. Yanni Y. G. , Rizk R. Y. , Corich V. , Squartini A. , Ninke K. , Philip-Hollingsworth S. , Orgambide G. , de Bruijn F. , Stoltzfus J. . & other authors ( 1997; ). Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. . Plant Soil 194:, 99–114. [CrossRef]
    [Google Scholar]
  43. Young J. M. , Kuykendall L. D. , Martínez-Romero E. , Kerr A. , Sawada H. . ( 2001; ). A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . . Int J Syst Evol Microbiol 51:, 89–103.[PubMed] [CrossRef]
    [Google Scholar]
  44. Zhang R. J. , Hou B. C. , Wang E. T. , Li Y. Jr , Zhang X. X. , Chen W. X. . ( 2011a; ). Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra . . Int J Syst Evol Microbiol 61:, 512–517. [CrossRef] [PubMed]
    [Google Scholar]
  45. Zhang X. , Sun L. , Ma X. , Sui X. H. , Jiang R. . ( 2011b; ). Rhizobium pseudoryzae sp. nov., isolated from the rhizosphere of rice. . Int J Syst Evol Microbiol 61:, 2425–2429. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061622-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061622-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error