sp. nov., a marine bacterium isolated from a deep-sea hydrothermal vent environment Free

Abstract

A Gram-stain-negative, strictly aerobic, chemoheterotrophic marine bacterium, designated 20V17, was isolated from a deep-sea hydrothermal vent chimney collected from the South-west Indian Ridge. Cells of strain 20V17 were motile, short rods, 1.2–1.8 µm in length and 0.5–0.7 µm in width. Growth was observed at between 20 and 37 °C (optimum 25 °C–28 °C), pH 5.0 and 8.0 (optimum pH 7.0) and 0.5 and 8 % (w/v) NaCl (optimum 1.5–2.0 % NaCl). The major fatty acids were Cω7 (74.4 %), C cyclo ω8 (11 %), C (5.1 %) and C 3-OH (2.8 %), and the polar lipid profile comprised diphosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and four unidentified phospholipids. Ubiquinone 10 was the major quinone. The GC content of genomic DNA was 66.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain 20V17 belonged to the genus and shared 96.5 and 96.1 % sequence similarity with D9-3 and BS14, respectively. On the basis of the taxonomic data obtained in this study, strain 20V17 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 20V17 (CGMCC 1.10859 = JCM 17871 = MCCC 1A01802).

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award 41106150)
  • National Program on Key Basic Research Project (Award 2012CB417300 and 973 Program)
  • Natural Science Foundation of Fujian Province of China (Award 2011J01209)
  • COMRA (Award DY125-15-R-01)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061614-0
2014-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2084.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061614-0&mimeType=html&fmt=ahah

References

  1. Achenbach L. A., Carey J., Madigan M. T. ( 2001 ). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. . Appl Environ Microbiol 67, 29222926. [View Article] [PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997 ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25, 33893402. [View Article] [PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) ( 1995 ). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, , 3rd edn.. New York:: Wiley;.
    [Google Scholar]
  4. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F. ( 2002 ). Unsuspected diversity among marine aerobic anoxygenic phototrophs. . Nature 415, 630633. [View Article] [PubMed]
    [Google Scholar]
  5. Cytryn E., Gelfand I., Barak Y., van Rijn J., Minz D. ( 2003 ). Diversity of microbial communities correlated to physiochemical parameters in a digestion basin of a zero-discharge mariculture system. . Environ Microbiol 5, 5563. [View Article] [PubMed]
    [Google Scholar]
  6. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  7. Foesel B. U., Drake H. L., Schramm A. ( 2011 ). Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. . Syst Appl Microbiol 34, 498502. [View Article] [PubMed]
    [Google Scholar]
  8. Kates M. ( 1986 ). Techniques of Lipidology, , 2nd edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  9. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J. ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62, 716721. [CrossRef]
    [Google Scholar]
  11. Lai Q., Yuan J., Shao Z. ( 2009 ). Maribaculum marinum gen. nov., sp. nov., isolated from deep seawater. . Int J Syst Evol Microbiol 59, 30833087. [View Article] [PubMed]
    [Google Scholar]
  12. Lai Q., Liu Y., Shao Z. ( 2014 ). Bacillus xiamenensis sp. nov., isolated from intestinal tract contents of a flathead mullet (Mugil cephalus). . Antonie van Leeuwenhoek 105, 99107. [View Article] [PubMed]
    [Google Scholar]
  13. Liu C., Shao Z. ( 2005 ). Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. . Int J Syst Evol Microbiol 55, 11811186. [View Article] [PubMed]
    [Google Scholar]
  14. Math R. K., Jin H. M., Jeong S. H., Jeon C. O. ( 2013 ). Defluviimonas aestuarii sp. nov., a marine bacterium isolated from a tidal flat, and emended description of the genus Defluviimonas Foesel et al. 2011. . Int J Syst Evol Microbiol 63, 28952900. [View Article] [PubMed]
    [Google Scholar]
  15. Pruesse E., Peplies J., Glöckner F. O. ( 2012 ). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28, 18231829. [View Article] [PubMed]
    [Google Scholar]
  16. Rzhetsky A., Nei M. ( 1992 ). A simple method for estimating and testing minimum-evolution trees. . Mol Biol Evol 9, 945967.
    [Google Scholar]
  17. Rzhetsky A., Nei M. ( 1993 ). Theoretical foundation of the minimum-evolution method of phylogenetic inference. . Mol Biol Evol 10, 10731095.[PubMed]
    [Google Scholar]
  18. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  19. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. ( 1996 ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46, 10991104. [View Article] [PubMed]
    [Google Scholar]
  20. Sasser M. ( 1997 ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
    [Google Scholar]
  21. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H. ( 2003 ). Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. . Int J Syst Evol Microbiol 53, 479484. [View Article] [PubMed]
    [Google Scholar]
  22. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013 ). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30, 27252729. [View Article] [PubMed]
    [Google Scholar]
  23. Wery N., Moricet J. M., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M. A., Barbier G. ( 2001 ). Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 51, 17891796. [View Article] [PubMed]
    [Google Scholar]
  24. Zeng Y. H., Shen W., Jiao N. Z. ( 2009 ). Genetic diversity of aerobic anoxygenic photosynthetic bacteria in open ocean surface waters and upper twilight zones. . Mar Biol 156, 425437. [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061614-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061614-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed