1887

Abstract

A novel actinobacterial strain, designated, NIO-1009, was isolated from a marine sediment sample collected from Chorao Island, Goa, India. Phylogenetic analysis comparisons based on 16S rRNA gene sequences between strain NIO-1009 and other members of the genus revealed that strain NIO-1009 had the closest sequence similarity to DSM 44908 and DSM 20151 with 99.2 and 99.1 %, respectively. Furthermore, DNA–DNA hybridization results showed that DSM 44908 and DSM 20151 were 39.5 (3.0 %) and 41.7 (2.0 %) with strain NIO-1009, respectively, which were well below the 70 % limit for any novel species proposal. Phylogenetically strain NIO-1009 forms a stable clade with and DSM 44908 and DSM 20151 with 100 % bootstrap values. Strain NIO-1009 contained -diaminopimelic acid as the diagnostic diamino acid and galactose and arabinose as the cell wall sugars. The major fatty acids were C, Cω9, C(ω6 and/or ω7) and 10-methyl C. The only menaquinone detected was MK-8(H), while the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and one unknown phospholipid. The G+C content of the genomic DNA was 66.9 mol%. The phenotypic and genotypic data showed that strain NIO-1009 warrants recognition as a novel species of the genus for which the name sp. nov., is proposed; the type strain is NIO-1009 ( = NCIM 5452 = DSM 45688).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061390-0
2014-08-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2693.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061390-0&mimeType=html&fmt=ahah

References

  1. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  2. Dong X. Z., Cai M. Y.. ( 2001;). Manual of Systematics and Identification of General Bacteria. Beijing:: Science Press;.
    [Google Scholar]
  3. Embley T. M., Stackebrandt E.. ( 1994;). The molecular phylogeny and systematics of the actinomycetes. . Annu Rev Microbiol 48:, 257–289. [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Finnerty W. R.. ( 1992;). The biology and genetics of the genus Rhodococcus. . Annu Rev Microbiol 46:, 193–218. [CrossRef][PubMed]
    [Google Scholar]
  7. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specified tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  8. Gillis M., De Ley J., De Cleene M.. ( 1970;). The determination of molecular weight of bacterial genome DNA from renaturation rates. . Eur J Biochem 12:, 143–153. [CrossRef][PubMed]
    [Google Scholar]
  9. Goodfellow M.. ( 1989;). Genus Rhodococcus. . In Bergey’s Manual of Systematic Bacteriology, vol. 4. pp. 2362–2371. edited by Williams S. T., Sharpe M. E., Holt J. G... Baltimore:: Williams and Wilkins;.
    [Google Scholar]
  10. Goodfellow M., Alderson G.. ( 1977;). The actinomycete-genus Rhodococcus: a home for the “rhodochrous” complex. . J Gen Microbiol 100:, 99–122. [CrossRef][PubMed]
    [Google Scholar]
  11. Goodfellow M., Alderson G., Chun J.. ( 1998;). Rhodococcal systematics: problems and developments. . Antonie van Leeuwenhoek 74:, 3–20. [CrossRef][PubMed]
    [Google Scholar]
  12. Gürtler V., Mayall B. C., Seviour R.. ( 2004;). Can whole genome analysis refine the taxonomy of the genus Rhodococcus?. FEMS Microbiol Rev 28:, 377–403. [CrossRef][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  14. Hayakawa M., Nonomura H.. ( 1987;). Humic acid-vitamin agar, a new medium for selective isolation of soil actinomycetes. . J Ferment Technol 65:, 501–509. [CrossRef]
    [Google Scholar]
  15. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  16. Ivshina I. B., Oborin A. A., Nesterenko O. A., Kasumova S. A.. ( 1981;). Bacteria of the Rhodococcus genus from the ground water of oil-bearing deposits in the Perm region near the Urals. . 50:, 709–717.
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  18. Klatte S., Kroppenstedt R. M., Rainey F. A.. ( 1994;). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. . Syst Appl Microbiol 17:, 355–360. [CrossRef]
    [Google Scholar]
  19. Kroppenstedt R. M.. ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver-loaded ion exchanger. . J Liq Chromatogr 5:, 2359–2367. [CrossRef]
    [Google Scholar]
  20. Lechevalier M. P., Lechevalier H. A.. ( 1970;). Chemical composition as criterion in the classification of aerobic actinomycetes. . Int J Syst Bacteriol 20:, 435–443. [CrossRef]
    [Google Scholar]
  21. Lechevalier M. P., de Bievre C., Lechevalier H. A.. ( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  22. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  23. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. . Int J Syst Evol Microbiol 57:, 1424–1428. [CrossRef][PubMed]
    [Google Scholar]
  24. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2011;). Evaluation of a new fluorimetric DNA–DNA hybridization method. . Can J Microbiol 57:, 250–255. [CrossRef][PubMed]
    [Google Scholar]
  25. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  26. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  27. Martínez-Murcia A. J., Rodríguez-Valera F.. ( 1994;). The use of arbitrarily primed PCR (AP-PCR) to develop taxa specific DNA probes of known sequence. . FEMS Microbiol Lett 124:, 265–269. [CrossRef][PubMed]
    [Google Scholar]
  28. Mayilraj S., Krishnamurthi S., Saha P., Saini H. S.. ( 2006;). Rhodococcus kroppenstedtii sp. nov., a novel actinobacterium isolated from a cold desert of the Himalayas, India. . Int J Syst Evol Microbiol 56:, 979–982. [CrossRef][PubMed]
    [Google Scholar]
  29. McMinn E. J., Alderson G., Dodson H. I., Goodfellow M., Ward A. C.. ( 2000;). Genomic and phenomic differentiation of Rhodococcus equi and related strains. . Antonie van Leeuwenhoek 78:, 331–340. [CrossRef][PubMed]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  31. Minnikin D. E., Alshamaony L., Goodfellow M.. ( 1975;). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. . J Gen Microbiol 88:, 200–204. [CrossRef][PubMed]
    [Google Scholar]
  32. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  33. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  34. Rainey F. A., Burghardt J., Kroppenstedt R. M., Klatte S., Stackebrandt E.. ( 1995;). Polyphasic evidence for the transfer of Rhodococcus roseus to Rhodococcus rhodochrous. . Int J Syst Bacteriol 45:, 101–103. [CrossRef]
    [Google Scholar]
  35. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  36. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC News Lett 20:, 1–6.
    [Google Scholar]
  37. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  38. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  39. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  40. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  41. Uchida K., Aida K.. ( 1977;). Acyl type of bacterial cell wall: its simple identification by colorimetric method. . J Gen Appl Microbiol 23:, 249–260. [CrossRef]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  43. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55:, 1149–1153. [CrossRef][PubMed]
    [Google Scholar]
  44. Yassin A. F., Binder C., Schaal K. P.. ( 1993;). Identification of mycobacterial isolates by thin-layer and capillary gas-liquid chromatography under diagnostic routine conditions. . Zentralbl Bakteriol 278:, 34–48. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061390-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061390-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error