1887

Abstract

Root nodule bacteria were trapped within cowpea () in soils with different cultivation histories collected from the Amazonian rainforest in northern Brazil. Analysis of the 16S rRNA gene sequences of six strains (BR 3351, BR 3307, BR 3310, BR 3315, BR 3323 BR and BR 3361) isolated from cowpea nodules showed that they formed a distinct group within the genus , which was separate from previously identified type strains. Phylogenetic analyses of three housekeeping genes (, and ) revealed that CCBAU 23303 was the most closely related type strain (96 % sequence similarity or lower). Chemotaxonomic data, including fatty acid profiles (predominant fatty acids being C and summed feature 8), the slow growth rate and carbon compound utilization patterns supported the assignment of the strains to the genus . The results of DNA–DNA hybridizations, antibiotic resistance and physiological tests differentiated these novel strains from the most closely related species of the genus with validly published names. Symbiosis-related genes for nodulation () and nitrogen fixation () grouped the novel strains of the genus together with strain EK05, with 94 % and 96 % sequence similarity, respectively. Based on these data, these six strains represent a novel species for which the name sp. nov. (BR 3351 = HAMBI 3596), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061259-0
2014-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2358.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061259-0&mimeType=html&fmt=ahah

References

  1. Chagas Junior A. F., Oliveira L. A. d., Oliveira A. N.. ( 2010;). Phenotypic characterization of rhizobia strains isolated from Amazonian soils and symbiotic efficiency in cowpea. . Acta Sci Agron 32:, 161–169.
    [Google Scholar]
  2. de Faria S. M., Lewis G. P., Sprent J. I., Sutherland J. M.. ( 1989;). Occurrence of nodulation in the Leguminosae. . New Phytol 111:, 607–619. [CrossRef]
    [Google Scholar]
  3. de Faria S. M., Diedhiou A. G., de Lima H. C., Ribeiro R. D., Galiana A., Castilho A. F., Henriques J. C.. ( 2010;). Evaluating the nodulation status of leguminous species from the Amazonian forest of Brazil. . J Exp Bot 61:, 3119–3127. [CrossRef][PubMed]
    [Google Scholar]
  4. Delamuta J. R. M., Ribeiro R. A., Ormeño-Orrillo E., Melo I. S., Martínez-Romero E., Hungria M.. ( 2013;). Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov.. Int J Syst Evol Microbiol 63:, 3342–3351. [CrossRef][PubMed]
    [Google Scholar]
  5. Ducke A.. ( 1949;). Notas Sobre a Flora Neotropica. II. As Leguminosas da Amazônia Brasileira. (Instituto Agronomico do Norte. Boletim Tecnico, 18). Belem:: Instituto Agronomico do Norte;.
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Farris J. S., Källersjö M., Kluge A. G., Bult C.. ( 1995;). Testing significance of incongruence. . Cladistics 10:, 315–319. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Fred E. B., Waksman S. A.. ( 1928;). Laboratory Manual of General Microbiology. New York:: McGraw Hill;.
    [Google Scholar]
  10. Gehring C., Vlek P. L. G., de Souza L. A. G., Denich M.. ( 2005;). Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. . Agric Ecosyst Environ 111:, 237–252. [CrossRef]
    [Google Scholar]
  11. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA - DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  12. Guimarães A. A., Jaramillo P. M. D., Nóbrega R. S. A., Florentino L. A., Silva K. B., de Souza Moreira F. M.. ( 2012;). Genetic and symbiotic diversity of nitrogen-fixing bacteria isolated from agricultural soils in the western Amazon by using cowpea as the trap plant. . Appl Environ Microbiol 78:, 6726–6733. [CrossRef][PubMed]
    [Google Scholar]
  13. Howieson J. G., De Meyer S. E., Vivas-Marfisi A., Ratnayake S., Ardley J. K., Yates R. J.. ( 2013;). Novel Burkholderia bacteria isolated from Lebeckia ambigua - A perennial suffrutescent legume of the fynbos. . Soil Biol Biochem 60:, 55–64. [CrossRef]
    [Google Scholar]
  14. Islam M. S., Kawasaki H., Muramatsu Y., Nakagawa Y., Seki T.. ( 2008;). Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. . Biosci Biotechnol Biochem 72:, 1416–1429. [CrossRef][PubMed]
    [Google Scholar]
  15. Jesus E. C., Moreira F. M. S., Florentino L. A., Rodrigues M. I. D., Oliveira M. S.. ( 2005;). Leguminosae nodulating bacteria diversity from three different land use systems in Brazilian Western Amazon. . Pesquisa Agropecu Bras 40:, 769–776. [CrossRef]
    [Google Scholar]
  16. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A.. ( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef][PubMed]
    [Google Scholar]
  17. Martinelli L. A., Victoria R. L., Trivelin P. C. O., Devol A. H., Richey J. E.. ( 1992;). 15N natural abundance in plants of the Amazon River floodplain and potential atmospheric N2 fixation. . Oecologia 90:, 591–596. [CrossRef]
    [Google Scholar]
  18. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic-acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Moreira F. M. S., Gillis M., Pot B., Kersters K., Franco A. A.. ( 1993;). Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative polyacrylamide gel electrophoresis of their total proteins. . Syst Appl Microbiol 16:, 135–146. [CrossRef]
    [Google Scholar]
  21. Moreira F. M. S., Haukka K., Young J. P. W.. ( 1998;). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. . Mol Ecol 7:, 889–895. [CrossRef][PubMed]
    [Google Scholar]
  22. Pitcher, D. G., Saunders, N. A. & Owen, R. J. (1989). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151–156.
  23. Radl V., Simões-Araújo J. L., Leite J., Passos S. R., Martins L. M. V., Xavier G. R., Rumjanek N. G., Baldani J. I., Zilli J. E.. ( 2014;). Microvirga vignae sp. nov., a root nodule symbiotic bacterium isolated from cowpea grown in semi-arid Brazil. . Int J Syst Evol Microbiol 64:, 725–730. [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Salati E., Sylvester-Bradley R., Victoria R. L.. ( 1982;). Regional gains and losses of nitrogen in the Amazon basin. . In Nitrogen Cycling in Ecosystems of Latin America and the Caribbean, pp. 367–376. Edited by Robertson G. P., Herrera R., Rosswall T... The Hague:: Springer Netherlands;. [CrossRef]
    [Google Scholar]
  26. Sarita S., Sharma P. K., Priefer U. B., Prell J.. ( 2005;). Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. . FEMS Microbiol Ecol 54:, 1–11. [CrossRef][PubMed]
    [Google Scholar]
  27. Silva M. F. D., Carreira L. M. M., Tavares A. S., Ribeiro I. C., Jardim M. A. G., Lobo M. G. A., Oliveira J.. ( 1988;). As leguminosas da Amazônia brasileira: lista prévia. . Acta bot Bras 2:, 193–237. [CrossRef]
    [Google Scholar]
  28. Silva F. V., Simões-Araújo J. L., Silva Júnior J. P., Xavier G. R., Rumjanek N. G.. ( 2012;). Genetic diversity of Rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. . Braz J Microbiol 43:, 682–691. [CrossRef][PubMed]
    [Google Scholar]
  29. Sprent J. I.. ( 1995;). Legume trees and shrubs in the tropics: N2 fixation in perspective. . Soil Biol Biochem 27:, 401–407. [CrossRef]
    [Google Scholar]
  30. Swofford D.. ( 1997;). paup: Phylogenetic analysis using parsimony. . Version 4.0b10. Washington, DC:: Smithsonian Institution;.
  31. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  32. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  33. Ueda T., Suga Y., Yahiro N., Matsuguchi T.. ( 1995;). Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. . J Bacteriol 177:, 1414–1417.[PubMed]
    [Google Scholar]
  34. Versalovic J., Schneider M., De Bruijn F., Lupski J. R.. ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  35. Vinuesa P., Silva C., Werner D., Martínez-Romero E.. ( 2005;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef][PubMed]
    [Google Scholar]
  36. Willems A., Coopman R., Gillis M.. ( 2001;). Phylogenetic and DNA–DNA hybridization analyses of Bradyrhizobium species. . Int J Syst Evol Microbiol 51:, 111–117.[PubMed]
    [Google Scholar]
  37. Zhang Y. M., Li Y. Jr, Chen W. F., Wang E. T., Sui X. H., Li Q. Q., Zhang Y. Z., Zhou Y. G., Chen W. X.. ( 2012;). Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. . Int J Syst Evol Microbiol 62:, 1951–1957. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061259-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061259-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error