1887

Abstract

Two motile, Gram-staining-negative, aerobic, rod-shaped bacteria designated strains E48 and E49 were isolated from the rhizosphere of from a natural salt meadow near Münzenberg, Germany. 16S rRNA gene sequence similarity analysis revealed that strains E48 and E49 shared similarities of 97.6 % with KMM 1406 and 98.5 % with E407-8, respectively. Major fatty acids of strain E48 were C, summed feature 3 (Cω7 and/or iso-C 2-OH) and Cω8, and of strain E49 were C, summed feature 3 (Cω7 and/or iso-C 2-OH) and Cω7. The DNA G+C contents were 50.5 mol% (E48) and 50.0 mol% (E49). Strains E48 and E49 grew at 4–37 °C (optimum 28 °C) and with 0–6 % NaCl (optimum 0–3 %) and 0–5 % NaCl (optimum 0–3 %), respectively. The potential for nitrogen fixation by strains E48 and E49 was evaluated by molecular techniques and the acetylene reduction assay. The DNA–DNA hybridization, physiological and molecular data demonstrated that strains E48 and E49 represent two novel species of the genus , and therefore the names sp. nov. (type strain E48 = LMG 27268 = KACC 17070) and sp. nov. (type strain E49 = LMG 27269 = KACC 17071) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061200-0
2014-04-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1202.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061200-0&mimeType=html&fmt=ahah

References

  1. Albrecht S. L. , Okon Y. . ( 1980; ). Cultures of Azospirillum . . Methods Enzymol 69:, 740–749.
    [Google Scholar]
  2. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410.[PubMed] [CrossRef]
    [Google Scholar]
  3. Boström K. H. , Riemann L. , Kühl M. , Hagström A. . ( 2007; ). Isolation and gene quantification of heterotrophic N2-fixing bacterioplankton in the Baltic Sea. . Environ Microbiol 9:, 152–164. [CrossRef] [PubMed]
    [Google Scholar]
  4. Brettar I. , Christen R. , Höfle M. G. . ( 2002; ). Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. . Int J Syst Evol Microbiol 52:, 1851–1857. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brettar I. , Christen R. , Höfle M. G. . ( 2006; ). Rheinheimera perlucida sp. nov., a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea. . Int J Syst Evol Microbiol 56:, 2177–2183. [CrossRef] [PubMed]
    [Google Scholar]
  6. Brosius J. , Palmer M. L. , Kennedy P. J. , Noller H. F. . ( 1978; ). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . . Proc Natl Acad Sci U S A 75:, 4801–4805. [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen Q. , Liu Z. , Peng Q. , Huang K. , He J. , Zhang L. , Li W. , Chen Y. . ( 2010a; ). [Diversity of halophilic and halotolerant bacteria isolated from non-saline soil collected from Xiaoxi National Natural Reserve, Hunan Province]. . Wei Sheng Wu Xue Bao 50:, 1452–1459 (in Chinese).[PubMed]
    [Google Scholar]
  8. Chen W.-M. , Lin C.-Y. , Young C.-C. , Sheu S.-Y. . ( 2010b; ). Rheinheimera aquatica sp. nov., an antimicrobial activity producing bacterium isolated from freshwater culture pond. . J Microbiol Biotechnol 20:, 1386–1392. [CrossRef] [PubMed]
    [Google Scholar]
  9. Chen W.-M. , Yang S.-H. , Young C.-C. , Sheu S.-Y. . ( 2013; ). Rheinheimera tilapiae sp. nov., isolated from a freshwater culture pond. . Int J Syst Evol Microbiol 63:, 1457–1463. [CrossRef] [PubMed]
    [Google Scholar]
  10. Cole J. R. , Wang Q. , Cardenas E. , Fish J. , Chai B. , Farris R. J. , Kulam-Syed-Mohideen A. S. , McGarrell D. M. , Marsh T. . & other authors ( 2009; ). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Database), D141–D145. [CrossRef] [PubMed]
    [Google Scholar]
  11. Edgar R. C. , Haas B. J. , Clemente J. C. , Quince C. , Knight R. . ( 2011; ). uchime improves sensitivity and speed of chimera detection. . Bioinformatics 27:, 2194–2200. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  13. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  14. Gerhard P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  15. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  16. Halpern M. , Senderovich Y. , Snir S. . ( 2007; ). Rheinheimera chironomi sp. nov., isolated from a chironomid (Diptera; Chironomidae) egg mass. . Int J Syst Evol Microbiol 57:, 1872–1875. [CrossRef] [PubMed]
    [Google Scholar]
  17. Hardy R. W. F. , Holsten R. D. , Jackson E. K. , Burns R. C. . ( 1968; ). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. . Plant Physiol 43:, 1185–1207. [CrossRef] [PubMed]
    [Google Scholar]
  18. Heimbrook M. E. , Wang W. L. L. , Campbell G. . ( 1989; ). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  19. Hill S. , Postgate J. R. . ( 1969; ). Failure of putative nitrogen-fixing bacteria to fix nitrogen. . J Gen Microbiol 58:, 277–285. [CrossRef] [PubMed]
    [Google Scholar]
  20. Huber T. , Faulkner G. , Hugenholtz P. . ( 2004; ). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. . Bioinformatics 20:, 2317–2319. [CrossRef] [PubMed]
    [Google Scholar]
  21. Johnson J. L. . ( 1994; ). Similarity analysis of rRNAs. . In Methods for General and Molecular Bacteriology, pp. 683–700. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  22. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  23. Kämpfer P. , Kroppenstedt R. M. . ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  24. Kämpfer P. , Denner E. B. M. , Meyer S. , Moore E. R. B. , Busse H. J. . ( 1997; ). Classification of “Pseudomonas azotocolligans” Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov.. Int J Syst Bacteriol 47:, 577–583. [CrossRef] [PubMed]
    [Google Scholar]
  25. Kampmann K. , Ratering S. , Kramer I. , Schmidt M. , Zerr W. , Schnell S. . ( 2012; ). Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. . Appl Environ Microbiol 78:, 2106–2119. [CrossRef] [PubMed]
    [Google Scholar]
  26. Kasana R. C. , Salwan R. , Dhar H. , Dutt S. , Gulati A. . ( 2008; ). A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. . Curr Microbiol 57:, 503–507. [CrossRef] [PubMed]
    [Google Scholar]
  27. Kim J.-S. , Dungan R. S. , Kwon S.-W. , Weon H.-Y. . ( 2006; ). The community composition of root-associated bacteria of the tomato plant. . World J Microbiol Biotechnol 22:, 1267–1273. [CrossRef]
    [Google Scholar]
  28. Kimura M. . ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  30. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . Chichester:: Wiley;.
    [Google Scholar]
  31. Li H.-J. , Zhang X.-Y. , Zhang Y.-J. , Zhou M.-Y. , Gao Z.-M. , Chen X.-L. , Dang H.-Y. , Zhang Y.-Z. . ( 2011; ). Rheinheimera nanhaiensis sp. nov., isolated from marine sediments, and emended description of the genus Rheinheimera Brettar et al. 2002 emend. Merchant et al. 2007. . Int J Syst Evol Microbiol 61:, 1016–1022. [CrossRef] [PubMed]
    [Google Scholar]
  32. Liu Y. , Jiang J. T. , Xu C. J. , Liu Y. H. , Song X. F. , Li H. , Liu Z. P. . ( 2012; ). Rheinheimera longhuensis sp. nov., isolated from a slightly alkaline lake, and emended description of genus Rheinheimera Brettar et al. 2002. . Int J Syst Evol Microbiol 62:, 2927–2933. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ludwig W. , Strunk O. , Klugbauer S. , Klugbauer N. , Weizenegger M. , Neumaier J. , Bachleitner M. , Schleifer K. H. . ( 1998; ). Bacterial phylogeny based on comparative sequence analysis. . Electrophoresis 19:, 554–568. [CrossRef] [PubMed]
    [Google Scholar]
  34. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. . & other authors ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  35. Manter D. K. , Delgado J. A. , Holm D. G. , Stong R. A. . ( 2010; ). Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. . Microb Ecol 60:, 157–166. [CrossRef] [PubMed]
    [Google Scholar]
  36. Merchant M. M. , Welsh A. K. , McLean R. J. C. . ( 2007; ). Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. . Int J Syst Evol Microbiol 57:, 2376–2380. [CrossRef] [PubMed]
    [Google Scholar]
  37. Moré M. I. , Herrick J. B. , Silva M. C. , Ghiorse W. C. , Madsen E. L. . ( 1994; ). Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. . Appl Environ Microbiol 60:, 1572–1580.[PubMed]
    [Google Scholar]
  38. Nokhal T. , Schlegel H. G. . ( 1983; ). Taxonomic study of Paracoccus denitrificans . . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  39. Pfennig N. . ( 1978; ). Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae . . Int J Syst Bacteriol 28:, 283–288. . [CrossRef]
    [Google Scholar]
  40. Poly F. , Monrozier L. J. , Bally R. . ( 2001; ). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. . Res Microbiol 152:, 95–103. [CrossRef] [PubMed]
    [Google Scholar]
  41. Prakamhang J. , Minamisawa K. , Teamtaisong K. , Boonkerd N. , Teaumroong N. . ( 2009; ). The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). . Appl Soil Ecol 42:, 141–149. [CrossRef]
    [Google Scholar]
  42. Pruesse E. , Peplies J. , Glöckner F. O. . ( 2012; ). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef] [PubMed]
    [Google Scholar]
  43. Raymond J. , Siefert J. L. , Staples C. R. , Blankenship R. E. . ( 2004; ). The natural history of nitrogen fixation. . Mol Biol Evol 21:, 541–554. [CrossRef] [PubMed]
    [Google Scholar]
  44. Roesti D. , Ineichen K. , Braissant O. , Redecker D. , Wiemken A. , Aragno M. . ( 2005; ). Bacteria associated with spores of the arbuscular mycorrhizal fungi Glomus geosporum and Glomus constrictum . . Appl Environ Microbiol 71:, 6673–6679. [CrossRef] [PubMed]
    [Google Scholar]
  45. Romanenko L. A. , Uchino M. , Falsen E. , Zhukova N. V. , Mikhailov V. V. , Uchimura T. . ( 2003; ). Rheinheimera pacifica sp. nov., a novel halotolerant bacterium isolated from deep sea water of the Pacific. . Int J Syst Evol Microbiol 53:, 1973–1977. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ryu S. H. , Chung B. S. , Park M. , Lee S. S. , Lee S.-S. , Jeon C. O. . ( 2008; ). Rheinheimera soli sp. nov., a gammaproteobacterium isolated from soil in Korea. . Int J Syst Evol Microbiol 58:, 2271–2274. [CrossRef] [PubMed]
    [Google Scholar]
  47. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  48. Schwieger F. , Tebbe C. C. . ( 1998; ). A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. . Appl Environ Microbiol 64:, 4870–4876.[PubMed]
    [Google Scholar]
  49. Sierra G. . ( 1957; ). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef] [PubMed]
    [Google Scholar]
  50. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  51. Suarez C. , Ratering S. , Kramer I. , Schnell S. . ( 2013; ). Cellvibrio diazotrophicus sp. nov., a nitrogen-fixing bacteria isolated from the rhizosphere of salt meadow plants and emended description of the genus Cellvibrio . . Int J Syst Evol Microbiol doi:10.1099/ijs.0.054817-0 [Epub ahead of print]. [CrossRef] [PubMed]
    [Google Scholar]
  52. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011; ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  53. Turner G. L. , Gibson A. H. . ( 1980; ). Measurement of nitrogen fixation by indirect means. . In Methods for Evaluating Biological Nitrogen Fixation, pp. 111–138. Edited by Bergensen F. J. . . Chichester:: Wiley;.
    [Google Scholar]
  54. Yarza P. , Richter M. , Peplies J. , Euzeby J. , Amann R. , Schleifer K.-H. , Ludwig W. , Glöckner F. O. , Rosselló-Móra R. . ( 2008; ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef] [PubMed]
    [Google Scholar]
  55. Yoon J.-H. , Bae S. E. , Kang S. J. , Oh T.-K. . ( 2007; ). Rheinheimera aquimaris sp. nov., isolated from seawater of the East Sea in Korea. . Int J Syst Evol Microbiol 57:, 1386–1390. [CrossRef] [PubMed]
    [Google Scholar]
  56. Zehr J. P. , Jenkins B. D. , Short S. M. , Steward G. F. . ( 2003; ). Nitrogenase gene diversity and microbial community structure: a cross-system comparison. . Environ Microbiol 5:, 539–554. [CrossRef] [PubMed]
    [Google Scholar]
  57. Zhang X. , Sun L. , Qiu F. , McLean R. J. C. , Jiang R. , Song W. . ( 2008; ). Rheinheimera tangshanensis sp. nov., a rice root-associated bacterium. . Int J Syst Evol Microbiol 58:, 2420–2424. [CrossRef] [PubMed]
    [Google Scholar]
  58. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061200-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061200-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error