1887

Abstract

A Gram-stain-positive, rod-shaped, non-motile, non-spore-forming, aerobic bacterial strain, designated BUT-2, was isolated from activated sludge of one herbicide-manufacturing wastewater-treatment facility in Kunshan, Jiangsu province, China, and subjected to polyphasic taxonomic studies. Analysis of the 16S rRNA gene sequence indicated that strain BUT-2 shared the highest similarity with (98.98 %), followed by (98.88 %), with less than 96 % similarlity to members of the genera , , and . Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain BUT-2 clustered with JC16 and MW10, occupying a distinct phylogenetic position. The major fatty acid (>10 % of total fatty acids) type of strain BUT-2 was iso-C The quinone system comprised menaquinone MK-7 (77.8 %), MK-6 (11.9 %) and MK-8 (10.3 %). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and some unidentified phospholipids. The cell-wall peptidoglycan type of strain BUT-2 was -Orn--Glu. The genomic DNA G+C content of strain BUT-2 was 48.5 mol%. Furthermore, the DNA–DNA relatedness in hybridization experiments against the reference strain was lower than 70 %, confirming that strain BUT-2 did not belong to previously described species of the genus . On the basis of its morphological, physiological and chemotaxonomic characteristics as well as phylogenetic analysis, strain BUT-2 is considered to represent a novel species of the genus , for which the name Chryseomicrobium sp. nov. is proposed. The type strain is BUT-2 ( = CCTCC AB2013082 = KACC 17219).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061143-0
2014-08-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2682.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061143-0&mimeType=html&fmt=ahah

References

  1. Arora P. K., Chauhan A., Pant B., Korpole S., Mayilraj S., Jain R. K.. ( 2011;). Chryseomicrobium imtechense gen. nov., sp. nov., a new member of the family Planococcaceae. . Int J Syst Evol Microbiol 61:, 1859–1864. [CrossRef][PubMed]
    [Google Scholar]
  2. Bernardet J.-F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  4. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872, 174AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 105–1139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  5. Cowan S. T., Steel K. J.. ( 1965;). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  6. Dittmer J. C., Lester R. L.. ( 1964;). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. . J Lipid Res 5:, 126–127.[PubMed]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. ( 1994;). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 1–207. [CrossRef]
    [Google Scholar]
  14. Lakshmi K. V. N. S., Sasikala Ch., Ashok Kumar G. V., Chandrasekaran R., Ramana Ch. V.. ( 2011;). Phaeovibrio sulfidiphilus gen. nov., sp. nov., phototrophic alphaproteobacteria isolated from brackish water. . Int J Syst Evol Microbiol 61:, 828–833. [CrossRef][PubMed]
    [Google Scholar]
  15. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal Wand Clustal_X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  16. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  17. McKerrow J., Vagg S., McKinney T., Seviour E. M., Maszenan A. M., Brooks P., Seviour R. J.. ( 2000;). A simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. . Lett Appl Microbiol 30:, 178–182. [CrossRef][PubMed]
    [Google Scholar]
  18. Minnikin D. E., O’donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  19. Pandey K. K., Mayilraj S., Chakrabarti T.. ( 2002;). Pseudomonas indica sp. nov., a novel butane-utilizing species. . Int J Syst Evol Microbiol 52:, 1559–1567. [CrossRef][PubMed]
    [Google Scholar]
  20. Raj P. S., Sasikala Ch., Ramaprasad E. V. V., Subhash Y., Busse H.-J., Schumann P., Ramana Ch. V.. ( 2013;). Chryseomicrobium amylolyticum sp. nov., isolated from a semi-arid tropical soil, and emended descriptions of the genus Chryseomicrobium and Chryseomicrobium imtechense. . Int J Syst Evol Microbiol 63:, 2612–2617. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids methyl esters (GC-FAME), Technical Note 101. Newark, DE:: MIDI;.
    [Google Scholar]
  23. Schumann P.. ( 2011;). Peptidoglycan Structure. . In Taxonomy of Prokaryotes, Methods in Microbiology, vol. 38, pp. 101–129. Edited by Rainey F., Oren A... London:: Academic Press;. [CrossRef]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  26. Tang S.-K., Wang Y., Lou K., Mao P.-H., Xu L.-H., Jiang C.-L., Kim C.-J., Li W.-J.. ( 2009a;). Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. . Int J Syst Evol Microbiol 59:, 1316–1320. [CrossRef][PubMed]
    [Google Scholar]
  27. Tang S.-K., Wang Y., Chen Y., Lou K., Cao L.-L., Xu L.-H., Li W.-J.. ( 2009b;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. . Int J Syst Evol Microbiol 59:, 2025–2032. [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  29. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  30. Yamada K., Fukuda W., Kondo Y., Miyoshi Y., Atomi H., Imanaka T.. ( 2011;). Constrictibacter antarcticus gen. nov., sp. nov., a cryptoendolithic micro-organism from Antarctic white rock. . Int J Syst Evol Microbiol 61:, 1973–1980. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang Y.-Q., Yu L.-Y., Wang D., Liu H.-Y., Sun C.-H., Jiang W., Zhang Y.-Q., Li W.-J.. ( 2008;). Roseomonas vinacea sp. nov., a Gram-negative coccobacillus isolated from a soil sample. . Int J Syst Evol Microbiol 58:, 2070–2074. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061143-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061143-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error