1887

Abstract

A Gram-staining-positive, rod-shaped, aerobic bacterium, designated strain LAM0410, was isolated from an oil-contaminated water sample from the Dagang Oilfield, PR China. The temperature and pH ranges for growth were 4 °C to 50 °C and pH 4.4 to pH 12.0, respectively. The strain did not need NaCl for growth, but could tolerate a concentration of up to 12 % (w/v). Cell wall hydrolysates from the isolate showed that the diamino acid was ornithine. The cell wall sugars contained ribose and galactose. The glycan moiety of the cell wall contained -glycolyl residues. The major respiratory quinones were MK-10, MK-11 and MK-12. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and nine unknown glycolipids. The major fatty acids were anteiso-C, anteiso-C and iso-C. 16S rRNA gene sequence analysis indicated that the isolate belonged to the genus and was closely related to MCCC 1A06153 and DSM 22178 with 97.5 % and 97.4 % sequence similarities, respectively; while the DNA–DNA hybridization values were 33.1±3.4 % and 21.8±1.6 %, respectively. The DNA G+C content was 67.4 mol%, as determined by the method. Based on its phenotypic and genotypic properties, strain LAM0410 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is LAM0410 ( = ACCC 00719 = JCM 19612).

Funding
This study was supported by the:
  • , National Nonprofit Institute Research Grant of CAAS , (Award 2014-30)
  • , Foundation of the Key Laboratory of Development and Application of Rural Renewable Energy (MOA, China , (Award 2013002)
  • , National Key Technology R&D Program of China , (Award 2011BAD11B05 and 2013BAD05B04F02)
  • , Science Foundation of Modern Farming Group , (Award MF20100518)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.061119-0
2014-12-01
2021-03-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/12/4168.html?itemId=/content/journal/ijsem/10.1099/ijs.0.061119-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Bradbury J. F. ( 1992 ). The genera Agromyces, Aureobacterium, Clavibacter, Curtobacterium, and Microbacterium . . In The Prokaryotes vol 2, pp. 1355–1368. Edited by Balows A., Trüper H. G., Dworkin M., Harder H., Schleifer K.-H. . New York:: Springer;.
    [Google Scholar]
  2. Collins M. D., Jones D., Kroppenstedt R. M. ( 1983 ). Reclassification of Brevibacterium imperiale (Steinhaus) and “Corynebacterium laevaniformans” (Dias and Bhat) in a Redefined Genus Microbacterium (Orla-Jensen), as Microbacterium imperiale comb. nov. and Microbacterium laevaniformans nom. rev.; comb. nov.. Syst Appl Microbiol 4, 6578. [CrossRef] [PubMed]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. ( 1970 ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12, 133142. [CrossRef]
    [Google Scholar]
  4. Fang M. X., Zhang W. W., Zhang Y. Z., Tan H. Q., Zhang X. Q., Wu M., Zhu X. F. ( 2012 ). Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. . Int J Syst Evol Microbiol 62, 30183023. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  6. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Schäfer J., Lodders N., Martin K. ( 2012 ). Microbacterium murale sp. nov., isolated from an indoor wall. . Int J Syst Evol Microbiol 62, 26692673. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  9. Komagata K., Suzuki K. ( 1987 ). Lipid and cell wall analysis in bacterial systematics. . Methods Microbiol 19, 161207. [CrossRef]
    [Google Scholar]
  10. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3, 208218. [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [CrossRef] [PubMed]
    [Google Scholar]
  12. Minnikin D. E., Odonnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [CrossRef]
    [Google Scholar]
  13. Orla-Jensen S. ( 1919 ). The Lactic Acid Bacteria. Copenhagen:: Host and Sons;.
    [Google Scholar]
  14. Ruan Z., Wang Y., Song J., Jiang S., Wang H., Li Y., Zhao B., Jiang R., Zhao B. ( 2014 ). Kurthia huakuii sp. nov., isolated from biogas slurry, and emended description of the genus Kurthia . . Int J Syst Evol Microbiol 64, 518521. [CrossRef] [PubMed]
    [Google Scholar]
  15. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  16. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. ( 2002 ). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52, 841849. [CrossRef] [PubMed]
    [Google Scholar]
  17. Schumann P., Evtushenko L. I. ( 2006 ). International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of the suborder Micrococcineae. Minutes of the meeting, 24 July 2005, San Francisco, CA, USA. . Int J Syst Evol Microbiol 56, 27212722. [CrossRef]
    [Google Scholar]
  18. Takeuchi M., Hatano K. ( 1998 ). Union of the genera Microbacterium Orla-Jensen and Aureobacterium Collins et al. in a redefined genus Microbacterium . . Int J Syst Bacteriol 48, 739747. [CrossRef] [PubMed]
    [Google Scholar]
  19. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [CrossRef] [PubMed]
    [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tindall B. J. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [CrossRef]
    [Google Scholar]
  22. Xu X. W., Huo Y. Y., Wang C. S., Oren A, Cui H. L., Vedler E., Wu M. ( 2011 ). Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . . Int J Syst Evol Microbial 61, 18171822. [CrossRef]
    [Google Scholar]
  23. Yu L., Lai Q., Yi Z., Zhang L., Huang Y., Gu L., Tang X. ( 2013 ). Microbacterium sediminis sp. nov., a psychrotolerant, thermotolerant, halotolerant and alkalitolerant actinomycete isolated from deep-sea sediment. . Int J Syst Evol Microbiol 63, 2530. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.061119-0
Loading
/content/journal/ijsem/10.1099/ijs.0.061119-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error