1887

Abstract

Three strictly anaerobic, Gram-positive, non-spore-forming, rod-shaped, motile bacteria, designated strains ACB1, ACB7 and ACB8, were isolated from human subgingival dental plaque. All strains required yeast extract for growth. Strains ACB1 and ACB8 were able to grow on glucose, lactose, maltose, maltodextrin and raffinose; strain ACB7 grew weakly on sucrose only. The growth temperature range was 30–42 °C with optimum growth at 37 °C. Major metabolic fermentation end products of strain ACB1 were acetate and lactate; the only product of strains ACB7 and ACB8 was acetate. Major fatty acids of strain ACB1 were C, C, Cω7 dimethyl aldehyde (DMA) and Cω7 DMA. Major fatty acids of strain ACB7 were C, C, C, Cω7 and Cω7 DMA. The hydrolysate of the peptidoglycan contained -diaminopimelic acid, indicating peptidoglycan type A1γ. Genomic DNA G+C content varied from 42 to 43.3 % between strains. According to 16S rRNA gene sequence phylogeny, strains ACB1, ACB8 and ACB7 formed two separate branches within the genus , with 98.1–98.6 % sequence similarity to the type strain of the type species, . Predicted DNA–DNA hybridization values between strains ACB1, ACB8, ACB7 and F0268 were <70 %. Based on distinct genotypic and phenotypic characteristics, strains ACB1 and ACB8, and strain ACB7 are considered to represent two distinct species of the genus , for which the names sp. nov. and sp. nov. are proposed. The type strains are ACB1 ( = DSM 24637 = HM-481 = ATCC BAA-2638) and ACB7 ( = DSM 24638 = HM-482 = ATCC BAA-2639), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060988-0
2014-08-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2642.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060988-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A., Dorsch M., Stackebrandt E., Collins M. D.. ( 1991;). Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. . Int J Syst Bacteriol 41:, 343–346. [CrossRef][PubMed]
    [Google Scholar]
  2. Auch A. F., Klenk H. P., Göker M.. ( 2010a;). Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. . Stand Genomic Sci 2:, 142–148. [CrossRef][PubMed]
    [Google Scholar]
  3. Auch A. F., von Jan M., Klenk H. P., Göker M.. ( 2010b;). Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  4. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M.. & other authors ( 2008;). The RAST Server: rapid annotations using subsystems technology. . BMC Genomics 9:, 75. [CrossRef][PubMed]
    [Google Scholar]
  5. Carlier J. P., K’ouas G., Bonne I., Lozniewski A., Mory F.. ( 2004;). Oribacterium sinus gen. nov., sp. nov., within the family ‘Lachnospiraceae’ (phylum Firmicutes). . Int J Syst Evol Microbiol 54:, 1611–1615. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen T., Yu W. H., Izard J., Baranova O. V., Lakshmanan A., Dewhirst F. E.. ( 2010;). The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. . Database: the journal of biological databases and curation 2010:, baq013.
    [Google Scholar]
  7. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C., Yu W. H., Lakshmanan A., Wade W. G.. ( 2010;). The human oral microbiome. . J Bacteriol 192:, 5002–5017. [CrossRef][PubMed]
    [Google Scholar]
  8. Ellis E. A.. ( 2006;). Solutions to the problem of substitution of ERL 4221 for vinyl cyclohexene dioxide in spurr low viscosity embedding formulations. . Microsc Today 14:, 32–33.
    [Google Scholar]
  9. Frazzon J., Dean D. R.. ( 2003;). Formation of iron-sulfur clusters in bacteria: an emerging field in bioinorganic chemistry. . Curr Opin Chem Biol 7:, 166–173. [CrossRef][PubMed]
    [Google Scholar]
  10. Fukushima M., Kakinuma K., Kawaguchi R.. ( 2002;). Phylogenetic analysis of Salmonella, Shigella, and Escherichia coli strains on the basis of the gyrB gene sequence. . J Clin Microbiol 40:, 2779–2785. [CrossRef][PubMed]
    [Google Scholar]
  11. Gee J. E., De B. K., Levett P. N., Whitney A. M., Novak R. T., Popovic T.. ( 2004;). Use of 16S rRNA gene sequencing for rapid confirmatory identification of Brucella isolates. . J Clin Microbiol 42:, 3649–3654. [CrossRef][PubMed]
    [Google Scholar]
  12. Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van de Peer Y., Vandamme P.. & other authors ( 2005;). Opinion: Re-evaluating prokaryotic species. . Nat Rev Microbiol 3:, 733–739. [CrossRef][PubMed]
    [Google Scholar]
  13. Jaspers E., Overmann J.. ( 2004;). Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. . Appl Environ Microbiol 70:, 4831–4839. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim M., Oh H. S., Park S. C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef][PubMed]
    [Google Scholar]
  15. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  16. Mihara H., Esaki N.. ( 2002;). Bacterial cysteine desulfurases: their function and mechanisms. . Appl Microbiol Biotechnol 60:, 12–23. [CrossRef][PubMed]
    [Google Scholar]
  17. Rainey F. A.. ( 2009;). Family V. Lachnospiraceae fam. nov. . In Bergey’s Manual of Systematic Bacteriology, vol. 3, pp. 921–968. Edited by De Dos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behaviour of the isomers of 2,6-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  19. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  20. Sizova M. V., Hohmann T., Hazen A., Paster B. J., Halem S. R., Murphy C. M., Panikov N. S., Epstein S. S.. ( 2012;). New approaches for isolation of previously uncultivated oral bacteria. . Appl Environ Microbiol 78:, 194–203. [CrossRef][PubMed]
    [Google Scholar]
  21. Sizova M. V., Muller P., Panikov N., Mandalakis M., Hohmann T., Hazen A., Fowle W., Prozorov T., Bazylinski D. A., Epstein S. S.. ( 2013;). Stomatobaculum longum gen. nov., sp. nov., an obligately anaerobic bacterium from the human oral cavity. . Int J Syst Evol Microbiol 63:, 1450–1456. [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  23. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  24. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. ( 2008;). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060988-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060988-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error