1887

Abstract

A bacterial strain designated RLAHU15 was isolated from root nodules of in Spain. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus , with its closest relatives being D75, DS-1, PECAE04 and B538 with 98.8 %, 98.9 %, 97.4 % and 97.4 % similarity, respectively. DNA–DNA hybridization studies showed values lower than 45 % between the strain RLAHU15 and any of these species. The isolate was a Gram-stain positive, motile and sporulating rod. Catalase activity was weak and oxidase activity was positive. Casein and starch were hydrolysed but gelatin was not. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C and iso-C were the major fatty acids. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and an unidentified lipid. -Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 54.4 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RLAHU15 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is RLAHU15 ( = LMG 27296 = CECT 8235).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060830-0
2014-09-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3028.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060830-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Ardley J. K., Parker M. A., De Meyer S. E., Trengove R. D., O’Hara G. W., Reeve W. G., Yates R. J., Dilworth M. J., Willems A., Howieson J. G.. ( 2012;). Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. . Int J Syst Evol Microbiol 62:, 2579–2588. [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Flores-Félix J. D., Cerda-Castillo E., Ramírez-Bahena M. H., Igual J. M., Tejedor C., Velázquez E., Peix A.. ( 2013;). Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum. . Int J Syst Evol Microbiol 63:, 4433–4438. [CrossRef][PubMed]
    [Google Scholar]
  4. Chun J., Goodfellow M.. ( 1995;). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. . Int J Syst Bacteriol 45:, 240–245. [CrossRef][PubMed]
    [Google Scholar]
  5. Claus D., Berkeley R. C. W.. ( 1986;). Genus Bacillus Cohn 1872, 174AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  6. Dasman, Kajiyama S., Kawasaki H., Yagi M., Seki T., Fukusaki E., Kobayashi A.. ( 2002;). Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune. . Int J Syst Evol Microbiol 52:, 1669–1674. [CrossRef][PubMed]
    [Google Scholar]
  7. De Meyer S. E., Willems A.. ( 2012;). Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. . Int J Syst Evol Microbiol 62:, 2505–2510. [CrossRef][PubMed]
    [Google Scholar]
  8. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington:: American Society for Microbiology;.
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Flores-Félix J. D., Carro L., Ramírez-Bahena M. H., Tejedor C., Igual J. M., Peix A., Velázquez E.. ( 2014;). Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. . Int J Syst Evol Microbiol 64:, 83–87. [CrossRef][PubMed]
    [Google Scholar]
  11. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H. J., Tindall B. J.. ( 2006;). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov.. Int J Syst Evol Microbiol 56:, 781–786. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Lim J. M., Jeon C. O., Park D. J., Xu L. H., Jiang C. L., Kim C. J.. ( 2006;). Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. . Int J Syst Evol Microbiol 56:, 2579–2582. [CrossRef][PubMed]
    [Google Scholar]
  15. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  16. Mandel M., Marmur J.. ( 1968;). Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. . Methods Enzymol 12B:, 195–206. [CrossRef]
    [Google Scholar]
  17. Priest F. G.. ( 2009;). Genus I. Paenibacillus. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 269–296. Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  19. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E.. ( 2007;). Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. . Lett Appl Microbiol 44:, 181–187. [CrossRef][PubMed]
    [Google Scholar]
  20. Rogers J. S., Swofford D. L.. ( 1998;). A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. . Syst Biol 47:, 77–89. [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI Inc.;
  23. Schumann P.. ( 2011;). Peptidoglycan Structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  24. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. . Int J Syst Bacteriol 47:, 289–298. [CrossRef][PubMed]
    [Google Scholar]
  25. Sierra G.. ( 1957;). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  29. Trujillo M. E., Kroppenstedt R. M., Fernández-Molinero C., Schumann P., Martínez-Molina E.. ( 2007;). Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. . Int J Syst Evol Microbiol 57:, 2799–2804. [CrossRef][PubMed]
    [Google Scholar]
  30. Trujillo M. E., Alonso-Vega P., Rodríguez R., Carro L., Cerda E., Alonso P., Martínez-Molina E.. ( 2010;). The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. . ISME J 4:, 1265–1281. [CrossRef][PubMed]
    [Google Scholar]
  31. Valverde A., Peix A., Rivas R., Velázquez E., Salazar S., Santa-Regina I., Rodríguez-Barrueco C., Igual J. M.. ( 2008;). Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. . Int J Syst Evol Microbiol 58:, 2560–2564. [CrossRef][PubMed]
    [Google Scholar]
  32. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M. H., Caviedes M. A., Mars M., Velázquez E., Rodríguez-Llorente I. D.. ( 2010;). Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta. . Int J Syst Evol Microbiol 60:, 2182–2186. [CrossRef][PubMed]
    [Google Scholar]
  33. Velázquez E., Valverde A., Rivas R., Gomis V., Peix A., Gantois I., Igual J. M., León-Barrios M., Willems A.. & other authors ( 2010;). Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. . Antonie van Leeuwenhoek 97:, 363–376. [CrossRef][PubMed]
    [Google Scholar]
  34. Velázquez E., Martínez-Hidalgo P., Carro L., Alonso P., Peix A., Trujillo M. E., Martínez-Molina E.. ( 2013;). Nodular endophytes: an untapped diversity. . In Beneficial Plant–Microbial Interactions: Ecology and Applications, pp. 215–235. Edited by Rodelas-González M. B., González-López J... USA:: CRC Press;. [CrossRef]
    [Google Scholar]
  35. Vincent J. M.. ( 1970;). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M... Oxford:: Blackwell Scientific;.
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  37. Willems A., Doignon-Bourcier F., Goris J., Coopman R., de Lajudie P., De Vos P., Gillis M.. ( 2001;). DNA-DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
  38. Wolko B., Clements J. C., Naganowska B., Nelson M. N., Yang H.. ( 2011;). Lupinus. . In Wild Crop Relatives: Genomic and Breeding Resources, pp. 153–206. Edited by Kole C... Berlin:: Springer-Verlag;. [CrossRef]
    [Google Scholar]
  39. Zhang J., Wang Z. T., Yu H. M., Ma Y.. ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa. . Int J Syst Evol Microbiol 63:, 1776–1781. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060830-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060830-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error