1887

Abstract

A bacterium (strain Tp2) was isolated from a caterpillar of the pine processionary moth, (Den. & Schiff.) (Lepidoptera: Thaumetopoeidae), a destructive pine forest pest. The bacterium is a Gram-stain-positive, red-pigmented coccus, oxidase-negative, nitrate-reducing, non-motile and non-spore-forming. Strain Tp2 was subjected to a taxonomic study using polyphasic approach that included morphological and biochemical characterizations, 16S rRNA gene sequence analysis, DNA–DNA hybridization, DNA G+C content analysis, comparative fatty acid profiles, and analyses of quinones and polar lipids. The 16S rRNA gene sequence of strain Tp2 revealed that DSM 20550 was the closest known strain (98 % 16S rRNA gene sequence similarity). DNA–DNA hybridization of DSM 20550 and strain Tp2 resulted in a DNA–DNA relatedness value of 11.9 % (20.2 % reciprocal). The DNA base composition of strain Tp2 was 69.5 mol%, which is consistent with the other recognized members of Actinobacteria that have a high G+C content in their genome. The polar lipid pattern of strain Tp2 consisted of diphosphatidylglycerol (major), phosphatidylglycerol and phosphatidylinositol and unknown glycolipids. The cellular fatty acids were anteiso C and anteiso C and the major menaquinone was MK-9(II-H). The peptidoglycan type was A3α with an -Lys–-Thr–-Ala interpeptide bridge. The above-mentioned characterization qualifies strain Tp2 as genotypically and phenotypically distinct from closely related species of the genus with validly published names. Strain Tp2 is therefore proposed to represent a novel species of the genus , described as sp. nov. The type strain is Tp2 ( = DSM 21719 = NCCB 100254).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060731-0
2014-10-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3384.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060731-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang H.-W., Bae J.-W., Nam Y.-D., Kwon H.-Y., Park J. R., Shin K.-S., Kim K.-H., Quan Z.-X., Rhee S.-K.. & other authors ( 2007;). Arthrobacter subterraneus sp. nov., isolated from deep subsurface water of the South Coast of Korea. . J Microbiol Biotechnol 17:, 1875–1879.[PubMed]
    [Google Scholar]
  4. Claus D.. ( 1992;). A standardized Gram staining procedure. . World J Microbiol Biotechnol 8:, 451–452. [CrossRef][PubMed]
    [Google Scholar]
  5. Conn H. J., Dimmick I.. ( 1947;). Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. . J Bacteriol 54:, 291–303.[PubMed]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  7. Euzéby, J. P. ( 2014;). List of prokaryotic names with standing in nomenclature: a folder available on the internet. . http://www.bacterio.net
  8. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Heyrman J., Verbeeren J., Schumann P., Swings J., De Vos P.. ( 2005;). Six novel Arthrobacter species isolated from deteriorated mural paintings. . Int J Syst Evol Microbiol 55:, 1457–1464. [CrossRef][PubMed]
    [Google Scholar]
  11. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  12. İnce I. A., Demir I., Demirbag Z., Nalcacioglu R.. ( 2007;). A cytoplasmic polyhedrosis virus isolated from the pine processionary caterpillar, Thaumetopoea pityocampa. . J Microbiol Biotechnol 17:, 632–637.[PubMed]
    [Google Scholar]
  13. İnce I. A., Kati H., Yilmaz H., Demir I., Demirbağ Z.. ( 2008;). Isolation and identification of bacteria from Thaumetopoea pityocampa Den. and Schiff. (Lep., Thaumetopoeidae) and determination of their biocontrol potential. . World J Microbiol Biotechnol 24:, 3005–3015. [CrossRef]
    [Google Scholar]
  14. Kati H., İnce I. A., Sezen K., Isci S., Demirbag Z.. ( 2009;). Characterization of two Bacillus thuringiensis ssp. morrisoni strains isolated from Thaumetopoea pityocampa (Lep., Thaumetopoeidae). . Biocontrol Sci Technol 19:, 475–484. [CrossRef]
    [Google Scholar]
  15. Kati H., İnce I. A., Demir I., Demirbag Z.. ( 2010;). Brevibacterium pityocampae sp. nov., isolated from caterpillars of Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae). . Int J Syst Evol Microbiol 60:, 312–316. [CrossRef][PubMed]
    [Google Scholar]
  16. Keddie R. M., Collins M. D., Jones D.. ( 1986;). Genus Arthrobacter Conn and Dimmick 1947, 300AL. . In Bergey’s Manual of Systematic Bacteriology, vol. 2, pp. 1288–1301. Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Koch C., Schumann P., Stackebrandt E.. ( 1995;). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. . Int J Syst Bacteriol 45:, 837–839. [CrossRef][PubMed]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  20. Leifson E.. ( 1960;). Atlas of Bacterial Flagellation. London:: Academic Press;.
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H.. (editors) ( 1999;). Manual of Clinical Microbiology, , 7th edn.. Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  23. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  25. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  26. Sevim A., Demir I., Demirbağ Z.. ( 2010;). Molecular characterization and virulence of Beauveria spp. from the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae). . Mycopathologia 170:, 269–277. [CrossRef][PubMed]
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J.. & other authors ( 2002;). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Nei M.. ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10:, 512–526.[PubMed]
    [Google Scholar]
  30. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060731-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060731-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error