1887

Abstract

A group of strains isolated from root nodules of (Lima bean) in Peru were characterized by genotypic, genomic and phenotypic methods. All strains possessed identical 16S rRNA gene sequences that were 99.9 % identical to that of CCBAU 23086. Despite having identical 16S rRNA gene sequences, the strains could be divided into two clades by sequence analysis of , , , and genes. The genome sequence of a representative of each clade was obtained and compared to the genomes of closely related species of the genus . Average nucleotide identity values below the species circumscription threshold were obtained when comparing the two clades to each other (88.6 %) and with all type strains of the genus (≤92.9 %). Phenotypes distinguishing both clades from all described and closely related species of the genus were found. On the basis of the results obtained, two novel species, sp. nov. (type strain LMTR 21 = DSM 18454 = HAMBI 2911) and sp. nov. (type strain LMTR 13 = HAMBI 3584 = CECT 8509 = CNPSo 2583), are proposed to accommodate the uncovered clades of bradyrhizobia. These species share highly related but distinct and symbiosis genes.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060426-0
2014-06-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2072.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060426-0&mimeType=html&fmt=ahah

References

  1. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S.. & other authors ( 2012;). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. . J Comput Biol 19:, 455–477. [CrossRef][PubMed]
    [Google Scholar]
  2. Chahboune R., Carro L., Peix A., Barrijal S., Velázquez E., Bedmar E. J.. ( 2011;). Bradyrhizobium cytisi sp. nov., isolated from effective nodules of Cytisus villosus. . Int J Syst Evol Microbiol 61:, 2922–2927. [CrossRef][PubMed]
    [Google Scholar]
  3. Chang Y. L., Wang J. Y., Wang E. T., Liu H. C., Sui X. H., Chen W. X.. ( 2011;). Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. . Int J Syst Evol Microbiol 61:, 2496–2502. [CrossRef][PubMed]
    [Google Scholar]
  4. Delgado-Salinas A., Bibler R., Lavin M.. ( 2006;). Phylogeny of the genus Phaseolus (Leguminosae): a recent diversification in an ancient landscape. . Syst Bot 31:, 779–791. [CrossRef]
    [Google Scholar]
  5. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Fofana B., Baudoin J. P., Vekemans X., Debouck D. G., du Jardin P.. ( 1999;). Molecular evidence for an Andean origin and a secondary gene pool for the Lima bean (Phaseolus lunatus L.) using chloroplast DNA. . Theor Appl Genet 98:, 202–212. [CrossRef]
    [Google Scholar]
  8. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  9. Guerrouj K., Ruíz-Díez B., Chahboune R., Ramírez-Bahena M. H., Abdelmoumen H., Quiñones M. A., El Idrissi M. M., Velázquez E., Fernández-Pascual M.. & other authors ( 2013;). Definition of a novel symbiovar (sv. retamae) within Bradyrhizobium retamae sp. nov., nodulating Retama sphaerocarpa and Retama monosperma. . Syst Appl Microbiol 36:, 218–223. [CrossRef][PubMed]
    [Google Scholar]
  10. Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W., Gascuel O.. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59:, 307–321. [CrossRef][PubMed]
    [Google Scholar]
  11. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. López-López A., Negrete-Yankelevich S., Rogel M. A., Ormeño-Orrillo E., Martínez J., Martínez-Romero E.. ( 2013;). Native bradyrhizobia from Los Tuxtlas in Mexico are symbionts of Phaseolus lunatus (Lima bean). . Syst Appl Microbiol 36:, 33–38. [CrossRef][PubMed]
    [Google Scholar]
  13. Martínez-Romero E., Segovia L., Mercante F. M., Franco A. A., Graham P., Pardo M. A.. ( 1991;). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. . Int J Syst Bacteriol 41:, 417–426. [CrossRef][PubMed]
    [Google Scholar]
  14. Menna P., Hungria M.. ( 2011;). Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. . Int J Syst Evol Microbiol 61:, 3052–3067. [CrossRef][PubMed]
    [Google Scholar]
  15. Menna P., Barcellos F. G., Hungria M.. ( 2009;). Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. . Int J Syst Evol Microbiol 59:, 2934–2950. [CrossRef][PubMed]
    [Google Scholar]
  16. Ormeño-Orrillo E., Vinuesa P., Zúñiga-Dávila D., Martínez-Romero E.. ( 2006;). Molecular diversity of native bradyrhizobia isolated from lima bean (Phaseolus lunatus L.) in Peru. . Syst Appl Microbiol 29:, 253–262. [CrossRef][PubMed]
    [Google Scholar]
  17. Posada D.. ( 2008;). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef][PubMed]
    [Google Scholar]
  18. Ramírez-Bahena M. H., Peix A., Rivas R., Camacho M., Rodríguez-Navarro D. N., Mateos P. F., Martínez-Molina E., Willems A., Velázquez E.. ( 2009;). Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. . Int J Syst Evol Microbiol 59:, 1929–1934. [CrossRef][PubMed]
    [Google Scholar]
  19. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  20. Rivas R., Martens M., de Lajudie P., Willems A.. ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium. . Syst Appl Microbiol 32:, 101–110. [CrossRef][PubMed]
    [Google Scholar]
  21. Sánchez-Cañizares C., Rey L., Durán D., Temprano F., Sánchez-Jiménez P., Navarro A., Polajnar M., Imperial J., Ruiz-Argüeso T.. ( 2011;). Endosymbiotic bacteria nodulating a new endemic lupine Lupinus mariae-josephi from alkaline soils in Eastern Spain represent a new lineage within the Bradyrhizobium genus. . Syst Appl Microbiol 34:, 207–215. [CrossRef][PubMed]
    [Google Scholar]
  22. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  23. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  24. Thies J. E., Bohlool B. B., Singleton P. W.. ( 1991;). Subgroups of the cowpea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. . Appl Environ Microbiol 57:, 1540–1545.[PubMed]
    [Google Scholar]
  25. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D. W.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. . Int J Syst Evol Microbiol 50:, 787–801. [CrossRef][PubMed]
    [Google Scholar]
  26. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  27. Toledo I., Lloret L., Martínez-Romero E.. ( 2003;). Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. . Syst Appl Microbiol 26:, 54–64. [CrossRef][PubMed]
    [Google Scholar]
  28. Versalovic J., Schneider M., De Bruijn F. J., Lupski J. R.. ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  29. Vincent J. M.. (editor) ( 1970;). A Manual for the Practical Study of Root Nodule Bacteria. Oxford:: Blackwell Scientific;.
    [Google Scholar]
  30. Vinuesa P., Silva C., Werner D., Martínez-Romero E.. ( 2005;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060426-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060426-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error