1887

Abstract

Thermococcus nautili, strain 30-1 (formerly reported as Thermococcus nautilus), was isolated from a hydrothermal chimney sample collected from the East Pacific Rise at a depth of 2633 m on the ‘La chainette PP57’ area. Cells were motile, irregular cocci with a polar tuft of flagella (0.8–1.5 µm) and divided by constriction. The micro-organism grew optimally at 87.5 °C (range 55–95 °C), at pH 7 (range pH 4–9) and with 2 % NaCl (range 1–4 %). Doubling time was 64 min in Zillig’s broth medium under optimal conditions. Growth was strictly anaerobic. It grew preferentially in the presence of elemental sulfur or cystine, which are reduced to HS, on complex organic substrates such as yeast extract, tryptone, peptone, Casamino acids and casein. Slow growth was observed on starch and pyruvate. Strain 30-1 was resistant to chloramphenicol and tetracyclin (at 100 µg ml) but sensitive to kanamycin and rifampicin. The G+C content of the genomic DNA was 54 mol%. Strain 30-1 harboured three plasmids named pTN1, pTN2 and pTN3 and produced membrane vesicles that incorporate pTN1 and pTN3. As determined by 16S rRNA gene sequence analysis, strain 30-1 is related most closely to sp. AM4 (99.3 % similarity) and DSM 15229 (99.2 %). DNA–DNA hybridization values () with these two closest relatives were below the threshold value of 70 % (33 % with sp. AM4 and 32 % with DSM 15229) and confirmed that strain 30-1 represents a novel species. On the basis of the data presented, strain 30-1 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 30-1 ( = CNCM 4275 = JCM 19601).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060376-0
2014-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1802.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060376-0&mimeType=html&fmt=ahah

References

  1. Achenbach-Richter L., Gupta R., Zillig W., Woese C. R.. ( 1988;). Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. . Syst Appl Microbiol 10:, 231–240. [CrossRef][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef][PubMed]
    [Google Scholar]
  3. Atomi H., Fukui T., Kanai T., Morikawa M., Imanaka T.. ( 2004;). Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1. . Archaea 1:, 263–267. [CrossRef][PubMed]
    [Google Scholar]
  4. Auch A. F., von Jan M., Klenk H. P., Göker M.. ( 2010;). Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. . Stand Genomic Sci 2:, 117–134. [CrossRef][PubMed]
    [Google Scholar]
  5. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  6. Benbouzid-Rollet N., López-García P., Watrin L., Erauso G., Prieur D., Forterre P.. ( 1997;). Isolation of new plasmids from hyperthermophilic Archaea of the order Thermococcales. . Res Microbiol 148:, 767–775. [CrossRef][PubMed]
    [Google Scholar]
  7. Brochier-Armanet C., Forterre P., Gribaldo S.. ( 2011;). Phylogeny and evolution of the Archaea: one hundred genomes later. . Curr Opin Microbiol 14:, 274–281. [CrossRef][PubMed]
    [Google Scholar]
  8. Canganella F., Jones W. J., Gambacorta A., Antranikian G.. ( 1998;). Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. . Int J Syst Bacteriol 48:, 1181–1185. [CrossRef][PubMed]
    [Google Scholar]
  9. Chaban B., Ng S. Y., Jarrell K. F.. ( 2006;). Archaeal habitats – from the extreme to the ordinary. . Can J Microbiol 52:, 73–116. [CrossRef][PubMed]
    [Google Scholar]
  10. Despalins A., Marsit S., Oberto J.. ( 2011;). Absynte: a web tool to analyze the evolution of orthologous archaeal and bacterial gene clusters. . Bioinformatics 27:, 2905–2906. [CrossRef][PubMed]
    [Google Scholar]
  11. Dirmeier R., Keller M., Hafenbradl D., Braun F. J., Rachel R., Burggraf S., Stetter K. O.. ( 1998;). Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. . Extremophiles 2:, 109–114. [CrossRef][PubMed]
    [Google Scholar]
  12. Farkas J. A., Picking J. W., Santangelo T. J.. ( 2013;). Genetic techniques for the Archaea. . Annu Rev Genet 47:, 539–561. [CrossRef][PubMed]
    [Google Scholar]
  13. Fukui T., Atomi H., Kanai T., Matsumi R., Fujiwara S., Imanaka T.. ( 2005;). Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. . Genome Res 15:, 352–363. [CrossRef][PubMed]
    [Google Scholar]
  14. Galtier N., Gouy M., Gautier C.. ( 1996;). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. . Comput Appl Biosci 12:, 543–548.[PubMed]
    [Google Scholar]
  15. Gardner A. F., Kumar S., Perler F. B.. ( 2012;). Genome sequence of the model hyperthermophilic archaeon Thermococcus litoralis NS-C. . J Bacteriol 194:, 2375–2376. [CrossRef][PubMed]
    [Google Scholar]
  16. Gaudin M., Gauliard E., Schouten S., Houel-Renault L., Lenormand P., Marguet E., Forterre P.. ( 2013a;). Hyperthermophilic archaea produce membrane vesicles that can transfer DNA. . Environ Microbiol Rep 5:, 109–116. [CrossRef][PubMed]
    [Google Scholar]
  17. Gaudin M., Krupovic M., Marguet E., Gauliard E., Cvirkaite-Krupovic V., Le Cam E., Oberto J., Forterre P.. ( 2013b;). Extracellular membrane vesicles harbouring viral genomes. . Environ Microbiol. In press. [CrossRef][PubMed]
    [Google Scholar]
  18. Geslin C., Le Romancer M., Gaillard M., Erauso G., Prieur D.. ( 2003a;). Observation of virus-like particles in high temperature enrichment cultures from deep-sea hydrothermal vents. . Res Microbiol 154:, 303–307. [CrossRef][PubMed]
    [Google Scholar]
  19. Geslin C., Le Romancer M., Erauso G., Gaillard M., Perrot G., Prieur D.. ( 2003b;). PAV1, the first virus-like particle isolated from a hyperthermophilic euryarchaeote, “Pyrococcus abyssi”. . J Bacteriol 185:, 3888–3894. [CrossRef][PubMed]
    [Google Scholar]
  20. Geslin C., Gaillard M., Flament D., Rouault K., Le Romancer M., Prieur D., Erauso G.. ( 2007;). Analysis of the first genome of a hyperthermophilic marine virus-like particle, PAV1, isolated from Pyrococcus abyssi. . J Bacteriol 189:, 4510–4519. [CrossRef][PubMed]
    [Google Scholar]
  21. Godfroy A., Meunier J. R., Guezennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G.. ( 1996;). Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the north Fiji Basin. . Int J Syst Bacteriol 46:, 1113–1119. [CrossRef][PubMed]
    [Google Scholar]
  22. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J. R., Guezennec J., Barbier G.. ( 1997;). Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Int J Syst Bacteriol 47:, 622–626. [CrossRef][PubMed]
    [Google Scholar]
  23. González J. M., Kato C., Horikoshi K.. ( 1995;). Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. . Arch Microbiol 164:, 159–164. [CrossRef][PubMed]
    [Google Scholar]
  24. González J. M., Sheckells D., Viebahn M., Krupatkina D., Borges K. M., Robb F. T.. ( 1999;). Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. . Arch Microbiol 172:, 95–101. [CrossRef][PubMed]
    [Google Scholar]
  25. Gorlas A., Koonin E. V., Bienvenu N., Prieur D., Geslin C.. ( 2012;). TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. . Environ Microbiol 14:, 503–516. [CrossRef][PubMed]
    [Google Scholar]
  26. Gorlas A., Alain K., Bienvenu N., Geslin C.. ( 2013a;). Thermococcus prieurii sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 63:, 2920–2926. [CrossRef][PubMed]
    [Google Scholar]
  27. Grote R., Li L., Tamaoka J., Kato C., Horikoshi K., Antranikian G.. ( 1999;). Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. . Extremophiles 3:, 55–62. [CrossRef][PubMed]
    [Google Scholar]
  28. Hirata A., Kanai T., Santangelo T. J., Tajiri M., Manabe K., Reeve J. N., Imanaka T., Murakami K. S.. ( 2008;). Archaeal RNA polymerase subunits E and F are not required for transcription in vitro, but a Thermococcus kodakarensis mutant lacking subunit F is temperature-sensitive. . Mol Microbiol 70:, 623–633. [CrossRef][PubMed]
    [Google Scholar]
  29. Jolivet E., L’Haridon S., Corre E., Forterre P., Prieur D.. ( 2003;). Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. . Int J Syst Evol Microbiol 53:, 847–851. [CrossRef][PubMed]
    [Google Scholar]
  30. Jung J. H., Holden J. F., Seo D. H., Park K. H., Shin H., Ryu S., Lee J. H., Park C. S.. ( 2012;). Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain CL1, isolated from a Paralvinella sp. polychaete worm collected from a hydrothermal vent. . J Bacteriol 194:, 4769–4770. [CrossRef][PubMed]
    [Google Scholar]
  31. Kent W. J.. ( 2002;). blat–the blast-like alignment tool. . Genome Res 12:, 656–664. [CrossRef][PubMed]
    [Google Scholar]
  32. Kim Y. J., Lee H. S., Kim E. S., Bae S. S., Lim J. K., Matsumi R., Lebedinsky A. V., Sokolova T. G., Kozhevnikova D. A.. & other authors ( 2010;). Formate-driven growth coupled with H2 production. . Nature 467:, 352–355. [CrossRef][PubMed]
    [Google Scholar]
  33. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K.. ( 1994;). Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Syst Appl Microbiol 17:, 232–236. [CrossRef]
    [Google Scholar]
  34. Krupovic M., Gonnet M., Hania W. B., Forterre P., Erauso G.. ( 2013;). Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. . PLoS ONE 8:, e49044. [CrossRef][PubMed]
    [Google Scholar]
  35. Kuwabara T., Minaba M., Ogi N., Kamekura M.. ( 2007;). Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 57:, 437–443. [CrossRef][PubMed]
    [Google Scholar]
  36. Lee H. S., Kang S. G., Bae S. S., Lim J. K., Cho Y., Kim Y. J., Jeon J. H., Cha S. S., Kwon K. K.. & other authors ( 2008;). The complete genome sequence of Thermococcus onnurineus NA1 reveals a mixed heterotrophic and carboxydotrophic metabolism. . J Bacteriol 190:, 7491–7499. [CrossRef][PubMed]
    [Google Scholar]
  37. Leigh J. A., Albers S. V., Atomi H., Allers T.. ( 2011;). Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. . FEMS Microbiol Rev 35:, 577–608. [CrossRef][PubMed]
    [Google Scholar]
  38. Lepage E., Marguet E., Geslin C., Matte-Tailliez O., Zillig W., Forterre P., Tailliez P.. ( 2004;). Molecular diversity of new Thermococcales isolates from a single area of hydrothermal deep-sea vents as revealed by randomly amplified polymorphic DNA fingerprinting and 16S rRNA gene sequence analysis. . Appl Environ Microbiol 70:, 1277–1286. [CrossRef][PubMed]
    [Google Scholar]
  39. Lucas S., Toffin L., Zivanovic Y., Charlier D., Moussard H., Forterre P., Prieur D., Erauso G.. ( 2002;). Construction of a shuttle vector for, and spheroplast transformation of, the hyperthermophilic archaeon Pyrococcus abyssi. . Appl Environ Microbiol 68:, 5528–5536. [CrossRef][PubMed]
    [Google Scholar]
  40. Mardanov A. V., Ravin N. V., Svetlitchnyi V. A., Beletsky A. V., Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Skryabin K. G.. ( 2009;). Metabolic versatility and indigenous origin of the archaeon Thermococcus sibiricus, isolated from a Siberian oil reservoir, as revealed by genome analysis. . Appl Environ Microbiol 75:, 4580–4588. [CrossRef][PubMed]
    [Google Scholar]
  41. Marguet E., Gaudin M., Gauliard E., Fourquaux I., le Blond du Plouy S., Matsui I., Forterre P.. ( 2013;). Membrane vesicles, nanopods and/or nanotubes produced by hyperthermophilic archaea of the genus Thermococcus. . Biochem Soc Trans 41:, 436–442. [CrossRef][PubMed]
    [Google Scholar]
  42. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14:, 60. [CrossRef][PubMed]
    [Google Scholar]
  43. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernych N. A., Alekseev V. A.. ( 1989;). Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. . Syst Appl Microbiol 12:, 257–262. [CrossRef]
    [Google Scholar]
  44. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmolovskaya E. A.. ( 1998;). Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. . Int J Syst Bacteriol 48:, 23–29. [CrossRef][PubMed]
    [Google Scholar]
  45. Mueller M., Takemasa R., Schwarz A., Atomi H., Nidetzky B.. ( 2009;). “Short-chain” α-1,4-glucan phosphorylase having a truncated N-terminal domain: functional expression and characterization of the enzyme from Sulfolobus solfataricus. . Biochim Biophys Acta 1794:, 1709–1714. [CrossRef][PubMed]
    [Google Scholar]
  46. Oberto J.. ( 2008;). baget: a web server for the effortless retrieval of prokaryotic gene context and sequence. . Bioinformatics 24:, 424–425. [CrossRef][PubMed]
    [Google Scholar]
  47. Pikuta E. V., Marsic D., Itoh T., Bej A. K., Tang J., Whitman W. B., Ng J. D., Garriott O. K., Hoover R. B.. ( 2007;). Thermococcus thioreducens sp. nov., a novel hyperthermophilic, obligately sulfur-reducing archaeon from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 57:, 1612–1618. [CrossRef][PubMed]
    [Google Scholar]
  48. Prieur D.. ( 2002;). Hydrothermal vents: prokaryotes in deep sea hydrothermal vents. . In Encyclopedia of Environmental Microbiology, pp. 1617–1628. Edited by Bitton G... New York:: Wiley;.
    [Google Scholar]
  49. Prieur D., Erauso G., Geslin C., Lucas S., Gaillard M., Bidault A., Mattenet A. C., Rouault K., Flament D.. & other authors ( 2004;). Genetic elements of Thermococcales. . Biochem Soc Trans 32:, 184–187. [CrossRef][PubMed]
    [Google Scholar]
  50. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  51. Ronimus R. S., Reysenbach A., Musgrave D. R., Morgan H. W.. ( 1997;). The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: a proposal that AN1 represents a new species, Thermococcus zilligii sp. nov.. Arch Microbiol 168:, 245–248. [CrossRef][PubMed]
    [Google Scholar]
  52. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  53. Santangelo T. J., Cubonová L., Reeve J. N.. ( 2008;). Shuttle vector expression in Thermococcus kodakaraensis: contributions of cis elements to protein synthesis in a hyperthermophilic archaeon. . Appl Environ Microbiol 74:, 3099–3104. [CrossRef][PubMed]
    [Google Scholar]
  54. Santangelo T. J., Cubonová L., Reeve J. N.. ( 2010;). Thermococcus kodakarensis genetics: TK1827-encoded β-glycosidase, new positive-selection protocol, and targeted and repetitive deletion technology. . Appl Environ Microbiol 76:, 1044–1052. [CrossRef][PubMed]
    [Google Scholar]
  55. Sato T., Fukui T., Atomi H., Imanaka T.. ( 2005;). Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. . Appl Environ Microbiol 71:, 3889–3899. [CrossRef][PubMed]
    [Google Scholar]
  56. Sokolova T. G., Jeanthon C., Kostrikina N. A., Chernyh N. A., Lebedinsky A. V., Stackebrandt E., Bonch-Osmolovskaya E. A.. ( 2004;). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. . Extremophiles 8:, 317–323. [CrossRef][PubMed]
    [Google Scholar]
  57. Soler N., Justome A., Quevillon-Cheruel S., Lorieux F., Le Cam E., Marguet E., Forterre P.. ( 2007;). The rolling-circle plasmid pTN1 from the hyperthermophilic archaeon Thermococcus nautilus. . Mol Microbiol 66:, 357–370. [CrossRef][PubMed]
    [Google Scholar]
  58. Soler N., Marguet E., Verbavatz J. M., Forterre P.. ( 2008;). Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order Thermococcales. . Res Microbiol 159:, 390–399. [CrossRef][PubMed]
    [Google Scholar]
  59. Soler N., Marguet E., Cortez D., Desnoues N., Keller J., van Tilbeurgh H., Sezonov G., Forterre P.. ( 2010;). Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins. . Nucleic Acids Res 38:, 5088–5104. [CrossRef][PubMed]
    [Google Scholar]
  60. Soler N., Gaudin M., Marguet E., Forterre P.. ( 2011;). Plasmids, viruses and virus-like membrane vesicles from Thermococcales. . Biochem Soc Trans 39:, 36–44. [CrossRef][PubMed]
    [Google Scholar]
  61. Stetter K. O.. ( 1996;). Hyperthermophilic prokaryotes. . FEMS Microbiol Rev 18:, 149–158. [CrossRef]
    [Google Scholar]
  62. Takai K., Sako Y.. ( 1999;). A molecular view of archaeal diversity in marine and terrestrial hot water environments. . FEMS Microbiol Lett 28:, 177–188. [CrossRef]
    [Google Scholar]
  63. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  64. Vannier P., Marteinsson V. T., Fridjonsson O. H., Oger P., Jebbar M.. ( 2011;). Complete genome sequence of the hyperthermophilic, piezophilic, heterotrophic, and carboxydotrophic archaeon Thermococcus barophilus MP. . J Bacteriol 193:, 1481–1482. [CrossRef][PubMed]
    [Google Scholar]
  65. Waege I., Schmid G., Thumann S., Thomm M., Hausner W.. ( 2010;). Shuttle vector-based transformation system for Pyrococcus furiosus. . Appl Environ Microbiol 76:, 3308–3313. [CrossRef][PubMed]
    [Google Scholar]
  66. Wang X., Gao Z., Xu X., Ruan L.. ( 2011;). Complete genome sequence of Thermococcus sp. strain 4557, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area. . J Bacteriol 193:, 5544–5545. [CrossRef][PubMed]
    [Google Scholar]
  67. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  68. Zillig W.. ( 1992;). The order Thermococcales. . In The Prokaryotes, , 2nd edn., vol. I, pp. 702–706. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H... New York:: Springer;.
    [Google Scholar]
  69. Zillig W., Holz I., Janekovic D., Schäfer W., Reiter W. D.. ( 1983;). The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. . Syst Appl Microbiol 4:, 88–94. [CrossRef][PubMed]
    [Google Scholar]
  70. Zivanovic Y., Lopez P., Philippe H., Forterre P.. ( 2002;). Pyrococcus genome comparison evidences chromosome shuffling-driven evolution. . Nucleic Acids Res 30:, 1902–1910. [CrossRef][PubMed]
    [Google Scholar]
  71. Zivanovic Y., Armengaud J., Lagorce A., Leplat C., Guérin P., Dutertre M., Anthouard V., Forterre P., Wincker P., Confalonieri F.. ( 2009;). Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. . Genome Biol 10:, R70. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060376-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060376-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error