1887

Abstract

Two Gram-staining-negative, aerobic, rod-shaped, non-spore-forming bacterial strains that are motile by a monopolar flagellum, designated CC-AMH-11 and CC-AMHZ-5, were isolated from droppings of a seashore bird off the coast of Hualien, Taiwan. The strains showed 99.7 % mutual pairwise 16S rRNA gene sequence similarity, while exhibiting <96.2 % sequence similarity to strains of other species of the genus (95.7–95.9 % similarity with type species, Pseudomonas aeruginosa LMG 1242T), and formed a distinct co-phyletic lineage in the phylogenetic trees. The common major fatty acids (>5 % of the total) were Cω7 and/or Cω6 (summed feature 8), Cω6 and/or Cω7 (summed feature 3), C and C. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine, an unidentified lipid and an unidentified phospholipid were detected as common polar lipids. The DNA G+C contents of strains CC-AMH-11 and CC-AMHZ-5 were 61.1 and 61.6 mol%, respectively. The common major respiratory quinone was ubiquinone 9 (Q-9), and the predominant polyamine was putrescine. The DNA–DNA hybridization obtained between the two strains was 79.0 % (reciprocal value 89.4 % using CC-AMHZ-5 DNA as the probe). The very high 16S rRNA gene sequence similarity and DNA–DNA relatedness and the poorly distinguishable phenotypic features witnessed between CC-AMH-11 and CC-AMHZ-5 suggested unambiguously that they are two distinct strains of a single genomic species. However, the strains also showed several genotypic and phenotypic characteristics that distinguished them from other closely related species of . Thus, the strains are proposed to represent a novel species of , for which the name sp. nov. is proposed. The type strain is CC-AMH-11 ( = JCM 19513 = BCRC 80696); a second strain of the same species is CC-AMHZ-5 ( = JCM 19512 = BCRC 80697). In addition, emended descriptions of the species , and are also proposed.

Funding
This study was supported by the:
  • , Ministry of Education, Taiwan, R.O.C.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060319-0
2014-07-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2330.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060319-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990 ). Basic local alignment search tool. . J Mol Biol 215, 403410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. ( 2000 ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. . Int J Syst Evol Microbiol 50, 15631589. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse H., El-Banna T., Auling G. ( 1989 ). Evaluation of different approaches for identification of xenobiotic-degrading pseudomonads. . Appl Environ Microbiol 55, 15781583.[PubMed]
    [Google Scholar]
  4. Collins M. D. ( 1985 ). Analysis of isoprenoid quinones. . Methods Microbiol 18, 329366. [CrossRef]
    [Google Scholar]
  5. Embley T. M., Wait R. ( 1994 ). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121161. Edited by Goodfellow M., O’Donnell A. G. . Chichester:: Wiley;.
    [Google Scholar]
  6. Espírito Santo C., Lin Y., Hao X., Wei G., Rensing C., Grass G. ( 2012 ). Draft genome sequence of Pseudomonas psychrotolerans L19, isolated from copper alloy coins. . J Bacteriol 194, 16231624. [CrossRef] [PubMed]
    [Google Scholar]
  7. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  9. Feng Z., Zhang J., Huang X., Zhang J., Chen M., Li S. ( 2012 ). Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. . Int J Syst Evol Microbiol 62, 26082612. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fitch W. M. ( 1971 ). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [CrossRef]
    [Google Scholar]
  11. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr ( 1992 ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. . Int J Syst Bacteriol 42, 166170. [CrossRef] [PubMed]
    [Google Scholar]
  12. GCG ( 1995 ). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Computer Group;.
    [Google Scholar]
  13. Hameed A., Shahina M., Lin S.-Y., Cho J. C., Lai W.-A., Young C.-C. ( 2013 ). Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia . . Int J Syst Evol Microbiol 63, 47904796. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hameed A., Shahina M., Lin S.-Y., Lai W.-A., Hsu Y.-H., Liu Y.-C., Young C.-C. ( 2014 ). Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter . . Int J Syst Evol Microbiol 64, 138145. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hauser E., Kämpfer P., Busse H.-J. ( 2004 ). Pseudomonas psychrotolerans sp. nov.. Int J Syst Evol Microbiol 54, 16331637. [CrossRef] [PubMed]
    [Google Scholar]
  16. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y. ( 1998 ). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8, 557561.[PubMed]
    [Google Scholar]
  17. Kämpfer P., Kroppenstedt R. M. ( 1996 ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42, 9891005. [CrossRef]
    [Google Scholar]
  18. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. & other authors ( 2012 ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62, 716721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lang E., Burghartz M., Spring S., Swiderski J., Spröer C. ( 2010 ). Pseudomonas benzenivorans sp. nov. and Pseudomonas saponiphila sp. nov., represented by xenobiotics degrading type strains. . Curr Microbiol 60, 8591. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lin S.-Y., Hameed A., Liu Y.-C., Hsu Y.-H., Lai W.-A., Chen W.-M., Shen F.-T., Young C.-C. ( 2013a ). Pseudomonas sagittaria sp. nov., a siderophore-producing bacterium isolated from oil-contaminated soil. . Int J Syst Evol Microbiol 63, 24102417. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lin S.-Y., Hameed A., Liu Y.-C., Hsu Y.-H., Lai W.-A., Young C.-C. ( 2013b ). Pseudomonas formosensis sp. nov., a gamma-proteobacteria isolated from food-waste compost in Taiwan. . Int J Syst Evol Microbiol 63, 31683174. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu Y.-C., Young L.-S., Lin S.-Y., Hameed A., Hsu Y.-H., Lai W.-A., Shen F.-T., Young C.-C. ( 2013 ). Pseudomonas guguanensis sp. nov., a gammaproteobacterium isolated from a hot spring. . Int J Syst Evol Microbiol 63, 45914598. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [CrossRef]
    [Google Scholar]
  25. Migula W. ( 1894 ). Über ein neues System der Bakterien. . Arb Bakteriol Inst Karlsruhe 1, 235238 (in German).
    [Google Scholar]
  26. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. ( 1984 ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2, 233241. [CrossRef]
    [Google Scholar]
  27. Montero-Calasanz M. C., Göker M., Rohde M., Spröer C., Schumann P., Busse H.-J., Schmid M., Tindall B. J., Klenk H.-P., Camacho M. ( 2013 ). Chryseobacterium hispalense sp. nov., a plant-growth-promoting bacterium isolated from a rainwater pond in an olive plant nursery, and emended descriptions of Chryseobacterium defluvii, Chryseobacterium indologenes, Chryseobacterium wanjuense and Chryseobacterium gregarium . . Int J Syst Evol Microbiol 63, 43864395. [CrossRef] [PubMed]
    [Google Scholar]
  28. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Oyaizu H., Komagata K. ( 1983 ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. . J Gen Appl Microbiol 29, 1740. [CrossRef]
    [Google Scholar]
  30. Palleroni N. J. ( 1984 ). Genus I. Pseudomonas Migula 1894. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 141199. Edited by Krieg N. R., Holt J. G. . Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  31. Park Y. D., Yi H., Baik K. S., Seong C. N., Bae K. S., Moon E. Y., Chun J. ( 2006 ). Pseudomonas segetis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 56, 25932595. [CrossRef] [PubMed]
    [Google Scholar]
  32. Pascual J., Lucena T., Ruvira M. A., Giordano A., Gambacorta A., Garay E., Arahal D. R., Pujalte M. J., Macián M. C. ( 2012 ). Pseudomonas litoralis sp. nov., isolated from Mediterranean seawater. . Int J Syst Evol Microbiol 62, 438444. [CrossRef] [PubMed]
    [Google Scholar]
  33. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  34. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20, 16.
    [Google Scholar]
  35. Scherer P., Kneifel H. ( 1983 ). Distribution of polyamines in methanogenic bacteria. . J Bacteriol 154, 13151322.[PubMed]
    [Google Scholar]
  36. Shahina M., Hameed A., Lin S.-Y., Hsu Y.-H., Liu Y.-C., Cheng I.-C., Lee M.-R., Lai W.-A., Lee R.-J., Young C.-C. ( 2013 ). Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium . . Int J Syst Evol Microbiol 63, 34153422. [CrossRef] [PubMed]
    [Google Scholar]
  37. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  38. Sneath P. H. A., Stevens M., Sackin M. J. ( 1981 ). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. . Antonie van Leeuwenhoek 47, 423448. [CrossRef] [PubMed]
    [Google Scholar]
  39. Stanier R. Y., Palleroni N. J., Doudoroff M. ( 1966 ). The aerobic pseudomonads: a taxonomic study. . J Gen Microbiol 43, 159271. [CrossRef] [PubMed]
    [Google Scholar]
  40. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. & other authors ( 2000 ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406, 959964. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [CrossRef] [PubMed]
    [Google Scholar]
  42. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997 ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25, 48764882. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. ( 2010 ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60, 249266. [CrossRef] [PubMed]
    [Google Scholar]
  44. Watts D., MacBeath J. R. ( 2001 ). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167, 153170.[PubMed]
    [Google Scholar]
  45. Weon H. Y., Kim B. Y., Yoo S. H., Baek Y. K., Lee S. Y., Kwon S. W., Go S. J., Stackebrandt E. ( 2006 ). Pseudomonas pohangensis sp. nov., isolated from seashore sand in Korea. . Int J Syst Evol Microbiol 56, 21532156. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060319-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060319-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error