1887

Abstract

An actinomycete strain, K12-0602, was isolated from the root of a plant in Japan. The 16S rRNA gene sequence of strain K12-0602 showed that it had a close relationship with members of the family and the 16S rRNA gene sequence similarity values between strain K12-0602 and type strains of type species of 27 genera belonging to the family were below 96.2 %. MK-9 (H) and MK-9 (H) were detected as major menaquinones, and galactose, xylose, mannose and ribose were present in the whole-cell hydrolysate. The acyl type of the peptidoglycan was glycolyl. Major fatty acids were iso-C, iso-C, Cω9 and anteiso-C. Phosphatidylethanolamine was detected as the phospholipid corresponding to phospholipid type II. The G+C content of the genomic DNA was 67 mol%. Analyses of the cell-wall peptidoglycan by TLC and LC/MS showed that it was composed of alanine, glycine, hydroxylglutamic acid and an unknown amino acid, which was subsequently determined to be 3,4-dihydroxydiaminopimelic acid using instrumental analyses, including NMR and mass spectrometry. On the basis of the phylogenetic analysis and chemotaxonomic characteristics, strain K12-0602 represents a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is K12-0602 ( = NBRC 109834 = DSM 45988). This is the first report, to our knowledge, of 3,4-dihydroxydiaminopimelic acid being found as a diamino acid in bacterial cell-wall peptidoglycan.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060293-0
2014-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2706.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060293-0&mimeType=html&fmt=ahah

References

  1. Ara I., Kudo T.. ( 2006;). Three novel species of the genus Catellatospora, Catellatospora chokoriensis sp. nov., Catellatospora coxensis sp. nov. and Catellatospora bangladeshensis sp. nov., and transfer of Catellatospora citrea subsp. methionotrophica Asano and Kawamoto 1988 to Catellatospora methionotrophica sp. nov., comb. nov.. Int J Syst Evol Microbiol 56:, 393–400. [CrossRef][PubMed]
    [Google Scholar]
  2. Ara I., Kudo T.. ( 2007;). Luedemannella gen. nov., a new member of the family Micromonosporaceae and description of Luedemannella helvata sp. nov. and Luedemannella flava sp. nov.. J Gen Appl Microbiol 53:, 39–51. [CrossRef][PubMed]
    [Google Scholar]
  3. Ara I., Bakir M. A., Kudo T.. ( 2008;). Transfer of Catellatospora koreensis Lee et al. 2000 as Catelliglobosispora koreensis gen. nov., comb. nov. and Catellatospora tsunoense Asano et al. 1989 as Hamadaea tsunoensis gen. nov., comb. nov., and emended description of the genus Catellatospora Asano and Kawamoto 1986 emend. Lee and Hah 2002. . Int J Syst Evol Microbiol 58:, 1950–1960. [CrossRef][PubMed]
    [Google Scholar]
  4. Asano K., Kawamoto I.. ( 1986;). Catellatospora, a new genus of the Actinomycetales. . Int J Syst Bacteriol 36:, 512–517. [CrossRef]
    [Google Scholar]
  5. Becker B., Lechevalier M. P., Lechevalier H. A.. ( 1965;). Chemical composition of cell-wall preparation from strains of various form-genera of aerobic actinomycetes. . Appl Microbiol 13:, 236–243.[PubMed]
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. . J Gen Microbiol 100:, 221–230. [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a species tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  10. Gouy M., Guindon S., Gascuel O.. ( 2010;). SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. . Mol Biol Evol 27:, 221–224. [CrossRef][PubMed]
    [Google Scholar]
  11. Hasegawa T., Takizawa M., Tanida S.. ( 1983;). A rapid analysis for chemical grouping of aerobic actinomycetes. . J Gen Appl Microbiol 29:, 319–322. [CrossRef]
    [Google Scholar]
  12. Inahashi Y., Matsumoto A., Danbara H., Ōmura S., Takahashi Y.. ( 2010;). Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. . Int J Syst Evol Microbiol 60:, 2652–2658. [CrossRef][PubMed]
    [Google Scholar]
  13. Inahashi Y., Matsumoto A., Ōmura S., Takahashi Y.. ( 2011a;). Streptosporangium oxazolinicum sp. nov., a novel endophytic actinomycete producing new antitrypanosomal antibiotics, spoxazomicins. . J Antibiot (Tokyo) 64:, 297–302. [CrossRef][PubMed]
    [Google Scholar]
  14. Inahashi Y., Iwatsuki M., Ishiyama A., Namatame M., Nishihara-Tsukashima A., Matsumoto A., Hirose T., Sunazuka T., Yamada H.. & other authors ( 2011b;). Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460T. . J Antibiot (Tokyo) 64:, 303–307. [CrossRef][PubMed]
    [Google Scholar]
  15. Inahashi Y., Matsumoto A., Ōmura S., Takahashi Y.. ( 2012;). Phytohabitans flavus sp. nov., Phytohabitans rumicis sp. nov. and Phytohabitans houttuyneae sp. nov., isolated from plant roots, and emended description of the genus Phytohabitans. . Int J Syst Evol Microbiol 62:, 2717–2723. [CrossRef][PubMed]
    [Google Scholar]
  16. Kawamoto I., Oka T., Nara T.. ( 1981;). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. . J Bacteriol 146:, 527–534.[PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  19. Koch C., Kroppenstedt R. M., Rainey F. A., Stackebrandt E.. ( 1996;). 16S ribosomal DNA analysis of the genera Micromonospora, Actinoplanes, Catellatospora, Catenuloplanes, Couchioplanes, Dactylosporangium, and Pilimelia and emendation of the family Micromonosporaceae. . Int J Syst Bacteriol 46:, 765–768. [CrossRef][PubMed]
    [Google Scholar]
  20. Koyama R., Matsumoto A., Inahashi Y., Ōmura S., Takahashi Y.. ( 2012;). Isolation of actinomycetes from the root of the plant, Ophiopogon japonicus, and proposal of two new species, Actinoallomurus liliacearum sp. nov. and Actinoallomurus vinaceus sp. nov.. J Antibiot (Tokyo) 65:, 335–340. [CrossRef][PubMed]
    [Google Scholar]
  21. Krasil’nikov N. A.. ( 1938;). Ray Fungi and Related Organisms – Actinomycetales. Moscow:: Akademii Nauk SSSR;.
    [Google Scholar]
  22. Lechevalier M. P., De Bievre C., Lechevalier H. A.. ( 1977;). Chemotaxonomy of aerobic actinomycetes: phospholipid composition. . Biochem Syst Ecol 5:, 249–260. [CrossRef]
    [Google Scholar]
  23. Lee D. W., Lee S. D.. ( 2011;). Allocatelliglobosispora scoriae gen. nov., sp. nov., isolated from volcanic ash. . Int J Syst Evol Microbiol 61:, 264–270. [CrossRef][PubMed]
    [Google Scholar]
  24. Matsumoto A., Takahashi Y., Shinose M., Seino A., Iwai Y., Ōmura S.. ( 2003;). Longispora albida gen. nov., sp. nov., a novel genus of the family Micromonosporaceae. . Int J Syst Evol Microbiol 53:, 1553–1559. [CrossRef][PubMed]
    [Google Scholar]
  25. Matsumoto A., Fukuda A., Inahashi Y., Ōmura S., Takahashi Y.. ( 2012;). Actinoallomurus radicium sp. nov., isolated from the roots of two plant species. . Int J Syst Evol Microbiol 62:, 295–298. [CrossRef][PubMed]
    [Google Scholar]
  26. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. K.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  27. Nakashima T., Okuyama R., Kamiya Y., Matsumoto A., Iwatsuki M., Inahashi Y., Yamaji K., Takahashi Y., Ōmura S.. ( 2013;). Trehangelins A, B and C, novel photo-oxidative hemolysis inhibitors produced by an endophytic actinomycete, Polymorphospora rubra K07-0510. . J Antibiot (Tokyo) 66:, 311–317. [CrossRef][PubMed]
    [Google Scholar]
  28. Nozawa Y., Sakai N., Arai K., Kawasaki Y., Harada K.. ( 2007;). Reliable and sensitive analysis of amino acids in the peptidoglycan of actinomycetes using the advanced Marfey’s method. . J Microbiol Methods 70:, 306–311. [CrossRef][PubMed]
    [Google Scholar]
  29. Pridham T. G., Gottlieb D.. ( 1948;). The utilization of carbon compounds by some Actinomycetales as an aid for species determination. . J Bacteriol 56:, 107–114.[PubMed]
    [Google Scholar]
  30. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. . Biochim Biophys Acta 72:, 619–629. [CrossRef][PubMed]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  33. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  34. Tomiyasu I.. ( 1982;). Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. . J Bacteriol 151:, 828–837.[PubMed]
    [Google Scholar]
  35. Uchida K., Aida K.. ( 1977;). Acyl type of bacterial cell wall: Its simple identification by colorimetric method. . J Gen Appl Microbiol 23:, 249–260. [CrossRef]
    [Google Scholar]
  36. Zhi X. Y., Li W. J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. . Int J Syst Evol Microbiol 59:, 589–608. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060293-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060293-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error