1887

Abstract

An anaerobic, spore-forming, ethanol-hydrogen-coproducing bacterium, designated LX-B, was isolated from an anaerobic sludge treating herbicide wastewater. Cells of strain LX-B were non-motile rods (0.3–0.5×3.0–18.0 µm). Spores were terminal with a bulged sporangium. Growth occurred at 20–50 °C (optimum 37–45 °C), pH 5.0–8.0 (optimum pH 6.0–7.7) and 0–2.5 % (w/v) NaCl. The strain could grow fermentatively on glucose, maltose, arabinose, fructose, xylose, ribose, galactose, mannose, raffinose, sucrose, pectin, starch, glycerol, fumarate, tryptone and yeast extract. The major end-products of glucose fermentation were acetate, ethanol and hydrogen. Yeast extract was not required but stimulated growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, anthraquinone-2,6-disulfonate, fumarate and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of the genomic DNA was 56.1 mol%. The major cellular fatty acids were anteiso-C, iso-C and C. The most abundant polar lipids of strain LX-B were diphosphatidylglycerol and phosphatidylglycerol. 16S rRNA gene sequence analysis revealed that it belongs to an as-yet-unidentified taxon at the order- or class-level (OPB54) within the phylum , showing 86.5 % sequence similarity to previously described species of the cluster. The name gen. nov., sp. nov. is proposed to accommodate strain LX-B ( = DSM 25471 = JCM 18117 = CGMCC 1.5175) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060186-0
2014-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1756.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060186-0&mimeType=html&fmt=ahah

References

  1. Brodie E. L. , Desantis T. Z. , Joyner D. C. , Baek S. M. , Larsen J. T. , Andersen G. L. , Hazen T. C. , Richardson P. M. , Herman D. J. . & other authors ( 2006; ). Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. . Appl Environ Microbiol 72:, 6288–6298. [CrossRef] [PubMed]
    [Google Scholar]
  2. Burrell P. C. , O’Sullivan C. , Song H. , Clarke W. P. , Blackall L. L. . ( 2004; ). Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. . Appl Environ Microbiol 70:, 2414–2419. [CrossRef] [PubMed]
    [Google Scholar]
  3. Doetsch R. N. . ( 1981; ). Determinative methods of light microscopy. . In Manual of Methods for General and Molecular Bacteriology, pp. 21–33. Edited by Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. H. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Dunfield P. F. , Tamas I. , Lee K. C. , Morgan X. C. , McDonald I. R. , Stott M. B. . ( 2012; ). Electing a candidate: a speculative history of the bacterial phylum OP10. . Environ Microbiol 14:, 3069–3080. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Hanada S. , Takaichi S. , Matsuura K. , Nakamura K. . ( 2002; ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. . Int J Syst Evol Microbiol 52:, 187–193.[PubMed] [CrossRef]
    [Google Scholar]
  7. Haouari O. , Fardeau M.-L. , Cayol J.-L. , Casiot C. , Elbaz-Poulichet F. , Hamdi M. , Joseph M. , Ollivier B. . ( 2008; ). Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. . Int J Syst Evol Microbiol 58:, 2529–2535. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hiraishi A. . ( 1992; ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. . Lett Appl Microbiol 15:, 210–213. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hugenholtz P. , Pitulle C. , Hershberger K. L. , Pace N. R. . ( 1998; ). Novel division level bacterial diversity in a Yellowstone hot spring. . J Bacteriol 180:, 366–376.[PubMed]
    [Google Scholar]
  10. Hungate R. E. . ( 1969; ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  11. Imachi H. , Sekiguchi Y. , Kamagata Y. , Hanada S. , Ohashi A. , Harada H. . ( 2002; ). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. . Int J Syst Evol Microbiol 52:, 1729–1735. [CrossRef] [PubMed]
    [Google Scholar]
  12. Imachi H. , Sakai S. , Ohashi A. , Harada H. , Hanada S. , Kamagata Y. , Sekiguchi Y. . ( 2007; ). Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. . Int J Syst Evol Microbiol 57:, 1487–1492. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  14. Kamagata Y. , Mikami E. . ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41:, 191–196. [CrossRef]
    [Google Scholar]
  15. Kanokratana P. , Uengwetwanit T. , Rattanachomsri U. , Bunterngsook B. , Nimchua T. , Tangphatsornruang S. , Plengvidhya V. , Champreda V. , Eurwilaichitr L. . ( 2011; ). Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. . Microb Ecol 61:, 518–528. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kato S. , Haruta S. , Cui Z. J. , Ishii M. , Yokota A. , Igarashi Y. . ( 2004; ). Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. . Int J Syst Evol Microbiol 54:, 2043–2047. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kong H. H. , Oh J. , Deming C. , Conlan S. , Grice E. A. , Beatson M. A. , Nomicos E. , Polley E. C. , Komarow H. D. . & other authors ( 2012; ). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. . Genome Res 22:, 850–859. [CrossRef] [PubMed]
    [Google Scholar]
  18. Liu Y. T. , Karnauchow T. M. , Jarrell K. F. , Balkwill D. L. , Drake G. R. , Ringelberg D. , Clarno R. , Boone D. R. . ( 1997; ). Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov, from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov, from a hot spring. . Int J Syst Bacteriol 47:, 615–621. [CrossRef]
    [Google Scholar]
  19. Ludwig W. , Schleifer K.-H. , Whitman W. B. . ( 2009; ). Revised road map to the phylum Firmicutes . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, pp. 1–13. Edited by De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K.-H. , Whitman W. B. . . New York:: Springer;. [CrossRef]
    [Google Scholar]
  20. Mandel M. , Igambi L. , Bergendahl J. , Dodson M. L. Jr , Scheltgen E. . ( 1970; ). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. . J Bacteriol 101:, 333–338.[PubMed]
    [Google Scholar]
  21. Nakai R. , Abe T. , Baba T. , Imura S. , Kagoshima H. , Kanda H. , Kanekiyo A. , Kohara Y. , Koi A. . & other authors ( 2012; ). Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. . Polar Biol 35:, 425–433. [CrossRef]
    [Google Scholar]
  22. Parshina S. N. , Sipma J. , Nakashimada Y. , Henstra A. M. , Smidt H. , Lysenko A. M. , Lens P. N. L. , Lettinga G. , Stams A. J. M. . ( 2005; ). Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. . Int J Syst Evol Microbiol 55:, 2159–2165. [CrossRef] [PubMed]
    [Google Scholar]
  23. Qiu Y. L. , Sekiguchi Y. , Hanada S. , Imachi H. , Tseng I. C. , Cheng S. S. , Ohashi A. , Harada H. , Kamagata Y. . ( 2006; ). Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. . Arch Microbiol 185:, 172–182. [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  25. Sekiguchi Y. , Kamagata Y. , Nakamura K. , Ohashi A. , Harada H. . ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50:, 771–779. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sekiguchi Y. , Yamada T. , Hanada S. , Ohashi A. , Harada H. , Kamagata Y. . ( 2003; ). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. . Int J Syst Evol Microbiol 53:, 1843–1851. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sizova M. V. , Izquierdo J. A. , Panikov N. S. , Lynd L. R. . ( 2011; ). Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. . Appl Environ Microbiol 77:, 2282–2291. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tang Y. , Shigematsu T. , Ikbal , Morimura S. , Kida K. . ( 2004; ). The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. . Water Res 38:, 2537–2550. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall B. J. . ( 1990; ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  31. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  32. Yutin N. , Galperin M. Y. . ( 2013; ). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15:, 2631–2641.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060186-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060186-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error