1887

Abstract

An anaerobic, spore-forming, ethanol-hydrogen-coproducing bacterium, designated LX-B, was isolated from an anaerobic sludge treating herbicide wastewater. Cells of strain LX-B were non-motile rods (0.3–0.5×3.0–18.0 µm). Spores were terminal with a bulged sporangium. Growth occurred at 20–50 °C (optimum 37–45 °C), pH 5.0–8.0 (optimum pH 6.0–7.7) and 0–2.5 % (w/v) NaCl. The strain could grow fermentatively on glucose, maltose, arabinose, fructose, xylose, ribose, galactose, mannose, raffinose, sucrose, pectin, starch, glycerol, fumarate, tryptone and yeast extract. The major end-products of glucose fermentation were acetate, ethanol and hydrogen. Yeast extract was not required but stimulated growth. Nitrate, sulfate, thiosulfate, elemental sulfur, sulfite, anthraquinone-2,6-disulfonate, fumarate and Fe (III) nitrilotriacetate were not used as terminal electron acceptors. The G+C content of the genomic DNA was 56.1 mol%. The major cellular fatty acids were anteiso-C, iso-C and C. The most abundant polar lipids of strain LX-B were diphosphatidylglycerol and phosphatidylglycerol. 16S rRNA gene sequence analysis revealed that it belongs to an as-yet-unidentified taxon at the order- or class-level (OPB54) within the phylum , showing 86.5 % sequence similarity to previously described species of the cluster. The name gen. nov., sp. nov. is proposed to accommodate strain LX-B ( = DSM 25471 = JCM 18117 = CGMCC 1.5175) as the type strain.

Funding
This study was supported by the:
  • , Taishan Scholar Program of Shandong Province
  • , Knowledge Innovation Program of the Chinese Academy of Sciences , (Award KG2D-EW-304-1 and KSCX2-YW-G-052)
  • , National Natural Science Foundation of China , (Award 51078344)
  • , National Key Technology R&D Program , (Award 2013BAD22B00)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060186-0
2014-05-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1756.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060186-0&mimeType=html&fmt=ahah

References

  1. Brodie E. L., Desantis T. Z., Joyner D. C., Baek S. M., Larsen J. T., Andersen G. L., Hazen T. C., Richardson P. M., Herman D. J. & other authors ( 2006 ). Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. . Appl Environ Microbiol 72, 62886298. [CrossRef] [PubMed]
    [Google Scholar]
  2. Burrell P. C., O’Sullivan C., Song H., Clarke W. P., Blackall L. L. ( 2004 ). Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. . Appl Environ Microbiol 70, 24142419. [CrossRef] [PubMed]
    [Google Scholar]
  3. Doetsch R. N. ( 1981 ). Determinative methods of light microscopy. . In Manual of Methods for General and Molecular Bacteriology, pp. 2133. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  4. Dunfield P. F., Tamas I., Lee K. C., Morgan X. C., McDonald I. R., Stott M. B. ( 2012 ). Electing a candidate: a speculative history of the bacterial phylum OP10. . Environ Microbiol 14, 30693080. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [CrossRef]
    [Google Scholar]
  6. Hanada S., Takaichi S., Matsuura K., Nakamura K. ( 2002 ). Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. . Int J Syst Evol Microbiol 52, 187193.[PubMed] [CrossRef]
    [Google Scholar]
  7. Haouari O., Fardeau M.-L., Cayol J.-L., Casiot C., Elbaz-Poulichet F., Hamdi M., Joseph M., Ollivier B. ( 2008 ). Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring. . Int J Syst Evol Microbiol 58, 25292535. [CrossRef] [PubMed]
    [Google Scholar]
  8. Hiraishi A. ( 1992 ). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. . Lett Appl Microbiol 15, 210213. [CrossRef] [PubMed]
    [Google Scholar]
  9. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. ( 1998 ). Novel division level bacterial diversity in a Yellowstone hot spring. . J Bacteriol 180, 366376.[PubMed]
    [Google Scholar]
  10. Hungate R. E. ( 1969 ). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B, 117132. [CrossRef]
    [Google Scholar]
  11. Imachi H., Sekiguchi Y., Kamagata Y., Hanada S., Ohashi A., Harada H. ( 2002 ). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. . Int J Syst Evol Microbiol 52, 17291735. [CrossRef] [PubMed]
    [Google Scholar]
  12. Imachi H., Sakai S., Ohashi A., Harada H., Hanada S., Kamagata Y., Sekiguchi Y. ( 2007 ). Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing bacterium. . Int J Syst Evol Microbiol 57, 14871492. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. ( 1969 ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21132. Edited by Munro H. N. . New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  14. Kamagata Y., Mikami E. ( 1991 ). Isolation and characterization of a novel thermophilic Methanosaeta strain. . Int J Syst Bacteriol 41, 191196. [CrossRef]
    [Google Scholar]
  15. Kanokratana P., Uengwetwanit T., Rattanachomsri U., Bunterngsook B., Nimchua T., Tangphatsornruang S., Plengvidhya V., Champreda V., Eurwilaichitr L. ( 2011 ). Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. . Microb Ecol 61, 518528. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kato S., Haruta S., Cui Z. J., Ishii M., Yokota A., Igarashi Y. ( 2004 ). Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. . Int J Syst Evol Microbiol 54, 20432047. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kong H. H., Oh J., Deming C., Conlan S., Grice E. A., Beatson M. A., Nomicos E., Polley E. C., Komarow H. D. & other authors ( 2012 ). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. . Genome Res 22, 850859. [CrossRef] [PubMed]
    [Google Scholar]
  18. Liu Y. T., Karnauchow T. M., Jarrell K. F., Balkwill D. L., Drake G. R., Ringelberg D., Clarno R., Boone D. R. ( 1997 ). Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov, from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov, from a hot spring. . Int J Syst Bacteriol 47, 615621. [CrossRef]
    [Google Scholar]
  19. Ludwig W., Schleifer K.-H., Whitman W. B. ( 2009 ). Revised road map to the phylum Firmicutes . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, pp. 113. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B. . New York:: Springer;. [CrossRef]
    [Google Scholar]
  20. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. ( 1970 ). Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. . J Bacteriol 101, 333338.[PubMed]
    [Google Scholar]
  21. Nakai R., Abe T., Baba T., Imura S., Kagoshima H., Kanda H., Kanekiyo A., Kohara Y., Koi A. & other authors ( 2012 ). Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and 16S rRNA gene analyses. . Polar Biol 35, 425433. [CrossRef]
    [Google Scholar]
  22. Parshina S. N., Sipma J., Nakashimada Y., Henstra A. M., Smidt H., Lysenko A. M., Lens P. N. L., Lettinga G., Stams A. J. M. ( 2005 ). Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100 % CO. . Int J Syst Evol Microbiol 55, 21592165. [CrossRef] [PubMed]
    [Google Scholar]
  23. Qiu Y. L., Sekiguchi Y., Hanada S., Imachi H., Tseng I. C., Cheng S. S., Ohashi A., Harada H., Kamagata Y. ( 2006 ). Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: two anaerobic bacteria that degrade phthalate isomers in syntrophic association with hydrogenotrophic methanogens. . Arch Microbiol 185, 172182. [CrossRef] [PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  25. Sekiguchi Y., Kamagata Y., Nakamura K., Ohashi A., Harada H. ( 2000 ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. . Int J Syst Evol Microbiol 50, 771779. [CrossRef] [PubMed]
    [Google Scholar]
  26. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. ( 2003 ). Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. . Int J Syst Evol Microbiol 53, 18431851. [CrossRef] [PubMed]
    [Google Scholar]
  27. Sizova M. V., Izquierdo J. A., Panikov N. S., Lynd L. R. ( 2011 ). Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. . Appl Environ Microbiol 77, 22822291. [CrossRef] [PubMed]
    [Google Scholar]
  28. Tamura K., Dudley J., Nei M., Kumar S. ( 2007 ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24, 15961599. [CrossRef] [PubMed]
    [Google Scholar]
  29. Tang Y., Shigematsu T., Ikbal, Morimura S., Kida K. ( 2004 ). The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. . Water Res 38, 25372550. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tindall B. J. ( 1990 ). Lipid composition of Halobacterium lacusprofundi . . FEMS Microbiol Lett 66, 199202. [CrossRef]
    [Google Scholar]
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. ( 1991 ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173, 697703.[PubMed]
    [Google Scholar]
  32. Yutin N., Galperin M. Y. ( 2013 ). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15, 26312641.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060186-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060186-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error