1887

Abstract

A Gram-staining-negative, curved-rod-shaped bacterium with close resemblance to , the aetiological agent of cholera, was isolated over the course of several years from coastal brackish water (17 strains) and from clinical cases (two strains) in the United States. 16S rRNA gene identity with exceeded 98 % yet an average nucleotide identity based on genome data of around 86 % and multi locus sequence analysis of six housekeeping genes (, , , and ) clearly delineated these isolates as a distinct genotypic cluster within the clade. Most standard identification techniques do not differentiate this cluster of isolates from . Only amplification of the gene using -specific primers and a negative Voges–Proskauer test showed a difference between the two clusters. Additionally, all isolated strains differed phenotypically from in their ability to utilize -acetyl--galactosamine and -glucuronic acid as sole carbon sources. Furthermore, they were generally unable to infect the slime mould , a widespread ability in . Based on these clear phenotypic differences that are not necessarily apparent in standard tests as well as average nucleotide identity and phylogeny of protein-coding genes, we propose the existence of a novel species, sp. nov. with the type strain OP3H ( = LMG 27764 = CIP 110643). Due to its close resemblance to and the increasing number of strains isolated over the past several years, we suggest that sp. nov. is a relatively common species of the genus , isolates of which have been identified as atypical isolates of in the past. Its isolation from clinical samples also indicates that strains of this species, like , are opportunistic pathogens.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060145-0
2014-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/9/3208.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060145-0&mimeType=html&fmt=ahah

References

  1. Boucher Y., Cordero O. X., Takemura A., Hunt D. E., Schliep K., Bapteste E., Lopez P., Tarr C. L., Polz M. F.. ( 2011;). Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. . MBio 2:, e00335-19. [CrossRef][PubMed]
    [Google Scholar]
  2. Choopun N.. ( 2004;). The population structure of Vibrio cholerae in Chesapeake Bay. PhD thesis, University of Maryland, College Park;, Maryland, USA:.
    [Google Scholar]
  3. Chun J., Huq A., Colwell R. R.. ( 1999;). Analysis of 16S–23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. . Appl Environ Microbiol 65:, 2202–2208.[PubMed]
    [Google Scholar]
  4. Davis B. R., Fanning G. R., Madden J. M., Steigerwalt A. G., Bradford H. B. Jr, Smith H. L. Jr, Brenner D. J.. ( 1981;). Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. . J Clin Microbiol 14:, 631–639.[PubMed]
    [Google Scholar]
  5. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  6. Haley B. J., Grim C. J., Hasan N. A., Choi S. Y., Chun J., Brettin T. S., Bruce D. C., Challacombe J. F., Detter J. C.. & other authors ( 2010;). Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. . BMC Microbiol 10:, 154. [CrossRef][PubMed]
    [Google Scholar]
  7. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D.. & other authors ( 2000;). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. . Nature 406:, 477–483. [CrossRef][PubMed]
    [Google Scholar]
  8. Huq A., Haley B. J., Taviani E., Chen A., Hasan N. A., Colwell R. R.. ( 2005;). Detection, isolation, and identification of Vibrio cholerae from the environment. . In Current Protocols in Microbiology, pp. 6A.5.1–6A.5.38. John Wiley & Sons, Inc;. [CrossRef]
    [Google Scholar]
  9. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester, United Kingdom:: Wiley & Sons;.
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  11. Maiden M. C.. ( 2008;). Population genomics: diversity and virulence in the Neisseria. . Curr Opin Microbiol 11:, 467–471. [CrossRef][PubMed]
    [Google Scholar]
  12. Nandi B., Nandy R. K., Mukhopadhyay S., Nair G. B., Shimada T., Ghose A. C.. ( 2000;). Rapid method for species-specific identification of Vibrio cholerae using primers targeted to the gene of outer membrane protein OmpW. . J Clin Microbiol 38:, 4145–4151.[PubMed]
    [Google Scholar]
  13. Nishiguchi M. K., Nair V. S.. ( 2003;). Evolution of symbiosis in the Vibrionaceae: a combined approach using molecules and physiology. . Int J Syst Evol Microbiol 53:, 2019–2026. [CrossRef][PubMed]
    [Google Scholar]
  14. Pascual J., Macián M. C., Arahal D. R., Garay E., Pujalte M. J.. ( 2010;). Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. . Int J Syst Evol Microbiol 60:, 154–165. [CrossRef][PubMed]
    [Google Scholar]
  15. Preheim S. P., Timberlake S., Polz M. F.. ( 2011;). Merging taxonomy with ecological population prediction in a case study of Vibrionaceae. . Appl Environ Microbiol 77:, 7195–7206. [CrossRef][PubMed]
    [Google Scholar]
  16. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J.. ( 2006;). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. . Proc Natl Acad Sci U S A 103:, 1528–1533. [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  18. Rosselló-Mora R., Amann R.. ( 2001;). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef][PubMed]
    [Google Scholar]
  19. Stamatakis A.. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. . Bioinformatics 22:, 2688–2690. [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson F. L., Swings J.. ( 2006;). Biology of the Vibrios, pp. 29–43. Edited by Thompson F. L., Austin B., Swings J... Washington, D.C.:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060145-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060145-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error