1887

Abstract

Two thermophilic, strictly anaerobic, Gram-negative bacteria, designated strains AZM34c06 and AZM44c09, were isolated from terrestrial hot springs in Japan. The optimum growth conditions for strain AZM34c06 were 60 °C, pH 7.4 and 0 % additional NaCl, and those for strain AZM44c09 were 70 °C, pH 7.4 and 0 % additional NaCl. Complete genome sequencing was performed for both strains, revealing genome sizes of 2.19 Mbp (AZM34c06) and 2.01 Mbp (AZM44c09). Phylogenetic analyses based on 16S rRNA gene sequences and the concatenated predicted amino acid sequences of 33 ribosomal proteins showed that both strains belonged to the genus . The closest relatives of strains AZM34c06 and AZM44c09 were the type strains of (96.0 % similarity based on the 16S rRNA gene and 84.1 % similarity based on ribosomal proteins) and (98.6 and 92.7 % similarity), respectively. Using , the average nucleotide identity was 70.4–70.5 % when comparing strain AZM34c06 and TMO and 76.6 % when comparing strain AZM44c09 and NBRC 106472. Both values are far below the 95 % threshold value for species delineation. In view of these data, we propose the inclusion of the two isolates in the genus within two novel species, sp. nov. (type strain AZM34c06 = NBRC 106115 = DSM 23275) and sp. nov. (type strain AZM44c09 = NBRC 106116 = DSM 23272).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060137-0
2014-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2128.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060137-0&mimeType=html&fmt=ahah

References

  1. Adachi J., Hasegawa M.. ( 1995;). Improved dating of the human/chimpanzee separation in the mitochondrial DNA tree: heterogeneity among amino acid sites. . J Mol Evol 40:, 622–628. [CrossRef][PubMed]
    [Google Scholar]
  2. Balk M., Weijma J., Stams A. J.. ( 2002;). Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. . Int J Syst Evol Microbiol 52:, 1361–1368. [CrossRef][PubMed]
    [Google Scholar]
  3. Ben Hania W., Postec A., Aüllo T., Ranchou-Peyruse A., Erauso G., Brochier-Armanet C., Hamdi M., Ollivier B., Saint-Laurent S.. & other authors ( 2013;). Mesotoga infera sp. nov., a mesophilic member of the order Thermotogales, isolated from an underground gas storage aquifer. . Int J Syst Evol Microbiol 63:, 3003–3008. [CrossRef][PubMed]
    [Google Scholar]
  4. Carballeira N. M., Reyes M., Sostre A., Huang H., Verhagen M. F., Adams M. W.. ( 1997;). Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima. . J Bacteriol 179:, 2766–2768.[PubMed]
    [Google Scholar]
  5. De Rosa M., Gambacorta A., Huber R., Lanzotti V., Nicolaus B., Stetter K. O., Trincone A.. ( 1988;). A new 15,16-dimethyl-30-glyceryloxytriacontanoic acid from lipids of Thermotoga maritima. . J Chem Soc Chem Commun 19:, 1300–1301. [CrossRef]
    [Google Scholar]
  6. Fardeau M. L., Ollivier B., Patel B. K., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J. L.. ( 1997;). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. . Int J Syst Bacteriol 47:, 1013–1019. [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  8. Hasegawa M., Kishino H.. ( 1994;). Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. . Mol Biol Evol 11:, 142–145.
    [Google Scholar]
  9. Hattori S.. ( 2008;). Syntrophic acetate-oxidizing microbes in methanogenic environments. . Microbes Environ 23:, 118–127. [CrossRef][PubMed]
    [Google Scholar]
  10. Huber R., Langworthy T. A., König H., Thomm M., Woese C. R., Sleytr U., Stetter K. O.. ( 1986;). Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90 °C. . Arch Microbiol 144:, 324–333. [CrossRef]
    [Google Scholar]
  11. Jannasch H., Huber R., Belkin S., Stetter K.. ( 1988;). Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga. . Arch Microbiol 150:, 103–104. [CrossRef]
    [Google Scholar]
  12. Jeanthon C., Reysenbach A. L., L’Haridon S., Gambacorta A., Pace N. R., Glénat P., Prieur D.. ( 1995;). Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. . Arch Microbiol 164:, 91–97. [CrossRef][PubMed]
    [Google Scholar]
  13. Jones D. T., Taylor W. R., Thornton J. M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8:, 275–282.[PubMed]
    [Google Scholar]
  14. Kishino H., Miyata T., Hasegawa M.. ( 1990;). Maximum-likelihood inference of protein phylogeny and the origin of chloroplasts. . J Mol Evol 31:, 151–160. [CrossRef]
    [Google Scholar]
  15. Latif H., Lerman J. A., Portnoy V. A., Tarasova Y., Nagarajan H., Schrimpe-Rutledge A. C., Smith R. D., Adkins J. N., Lee D. H.. & other authors ( 2013;). The genome organization of Thermotoga maritima reflects its lifestyle. . PLoS Genet 9:, e1003485. [CrossRef][PubMed]
    [Google Scholar]
  16. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  17. Mongodin E. F., Hance I. R., Deboy R. T., Gill S. R., Daugherty S., Huber R., Fraser C. M., Stetter K., Nelson K. E.. ( 2005;). Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. . J Bacteriol 187:, 4935–4944. [CrossRef][PubMed]
    [Google Scholar]
  18. Mori K., Kim H., Kakegawa T., Hanada S.. ( 2003;). A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. . Extremophiles 7:, 283–290. [CrossRef][PubMed]
    [Google Scholar]
  19. Mori K., Iino T., Ishibashi J., Kimura H., Hamada M., Suzuki K.. ( 2012;). Meiothermus hypogaeus sp. nov., a moderately thermophilic bacterium isolated from a hot spring. . Int J Syst Evol Microbiol 62:, 112–117. [CrossRef][PubMed]
    [Google Scholar]
  20. Nelson K. E., Clayton R. A., Gill S. R., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D., Nelson W. C.. & other authors ( 1999;). Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. . Nature 399:, 323–329. [CrossRef][PubMed]
    [Google Scholar]
  21. Nesbø C. L., Dlutek M., Doolittle W. F.. ( 2006;). Recombination in Thermotoga: implications for species concepts and biogeography. . Genetics 172:, 759–769. [CrossRef][PubMed]
    [Google Scholar]
  22. Nesbø C. L., Bradnan D. M., Adebusuyi A., Dlutek M., Petrus A. K., Foght J., Doolittle W. F., Noll K. M.. ( 2012;). Mesotoga prima gen. nov., sp. nov., the first described mesophilic species of the Thermotogales. . Extremophiles 16:, 387–393. [CrossRef][PubMed]
    [Google Scholar]
  23. Otaki H., Everroad R. C., Matsuura K., Haruta S.. ( 2012;). Production and consumption of hydrogen in hot spring microbial mats dominated by a filamentous anoxygenic photosynthetic bacterium. . Microbes Environ 27:, 293–299. [CrossRef][PubMed]
    [Google Scholar]
  24. Ravot G., Magot M., Fardeau M. L., Patel B. K., Prensier G., Egan A., Garcia J. L., Ollivier B.. ( 1995;). Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. . Int J Syst Bacteriol 45:, 308–314. [CrossRef][PubMed]
    [Google Scholar]
  25. Reysenbach A. L., Liu Y., Lindgren A. R., Wagner I. D., Sislak C. D., Mets A., Schouten S.. ( 2013;). Mesoaciditoga lauensis gen. nov., sp. nov., a moderately thermoacidophilic member of the order Thermotogales from a deep-sea hydrothermal vent. . Int J Syst Evol Microbiol 63:, 4724–4729. [CrossRef][PubMed]
    [Google Scholar]
  26. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  29. Takahata Y., Nishijima M., Hoaki T., Maruyama T.. ( 2001;). Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. . Int J Syst Evol Microbiol 51:, 1901–1909. [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  32. Windberger E., Huber R., Trincone A., Fricke H., Stetter K.. ( 1989;). Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. . Arch Microbiol 151:, 506–512. [CrossRef]
    [Google Scholar]
  33. Yutin N., Puigbò P., Koonin E. V., Wolf Y. I.. ( 2012;). Phylogenomics of prokaryotic ribosomal proteins. . PLoS ONE 7:, e36972. [CrossRef][PubMed]
    [Google Scholar]
  34. Zhaxybayeva O., Swithers K. S., Lapierre P., Fournier G. P., Bickhart D. M., DeBoy R. T., Nelson K. E., Nesbø C. L., Doolittle W. F.. & other authors ( 2009;). On the chimeric nature, thermophilic origin, and phylogenetic placement of the Thermotogales. . Proc Natl Acad Sci U S A 106:, 5865–5870. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060137-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060137-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error