1887

Abstract

In this study, the taxonomic position and group classification of the phytoplasma associated with a lethal yellowing-type disease (LYD) of coconut ( L.) in Mozambique were addressed. Pairwise similarity values based on alignment of nearly full-length 16S rRNA gene sequences (1530 bp) revealed that the Mozambique coconut phytoplasma (LYDM) shared 100 % identity with a comparable sequence derived from a phytoplasma strain (LDN) responsible for Awka wilt disease of coconut in Nigeria, and shared 99.0–99.6 % identity with 16S rRNA gene sequences from strains associated with Cape St Paul wilt (CSPW) disease of coconut in Ghana and Côte d’Ivoire. Similarity scores further determined that the 16S rRNA gene of the LYDM phytoplasma shared <97.5 % sequence identity with all previously described members of ‘ Phytoplasma ’. The presence of unique regions in the 16S rRNA gene sequence distinguished the LYDM phytoplasma from all currently described members of ‘ Phytoplasma ’, justifying its recognition as the reference strain of a novel taxon, ‘ Phytoplasma palmicola’. Virtual RFLP profiles of the F2n/R2 portion (1251 bp) of the 16S rRNA gene and pattern similarity coefficients delineated coconut LYDM phytoplasma strains from Mozambique as novel members of established group 16SrXXII, subgroup A (16SrXXII-A). Similarity coefficients of 0.97 were obtained for comparisons between subgroup 16SrXXII-A strains and CSPW phytoplasmas from Ghana and Côte d’Ivoire. On this basis, the CSPW phytoplasma strains were designated members of a novel subgroup, 16SrXXII-B.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.060053-0
2014-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1890.html?itemId=/content/journal/ijsem/10.1099/ijs.0.060053-0&mimeType=html&fmt=ahah

References

  1. Aguilar M. L., Espadas F., Maust B., Sáenz L.. ( 2009;). Endogenous cytokinin content in coconut palms affected by lethal yellowing. . J Plant Pathol 91:, 141–146.
    [Google Scholar]
  2. Al-Saady N. A., Khan A. J., Calari A., Al-Subhi A. M., Bertaccini A.. ( 2008;). Candidatus Phytoplasma omanense’, associated with witches’-broom of Cassia italica (Mill.) Spreng. in Oman. . Int J Syst Evol Microbiol 58:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  3. Andersen M. T., Liefting L. W., Havukkala I., Beever R. E.. ( 2013;). Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. . BMC Genomics 14:, 529. [CrossRef][PubMed]
    [Google Scholar]
  4. Arocha Y., López M., Piñol B., Fernández M., Picornell B., Almeida R., Palenzuela I., Wilson M. R., Jones P.. ( 2005;). Candidatus Phytoplasma graminis’ and ‘Candidatus Phytoplasma caricae’, two novel phytoplasmas associated with diseases of sugarcane, weeds and papaya in Cuba. . Int J Syst Evol Microbiol 55:, 2451–2463. [CrossRef][PubMed]
    [Google Scholar]
  5. Arocha Y., Antesana O., Montellano E., Franco P., Plata G., Jones P.. ( 2007;). Candidatus Phytoplasma lycopersici’, a phytoplasma associated with ‘hoja de perejil’ disease in Bolivia. . Int J Syst Evol Microbiol 57:, 1704–1710. [CrossRef][PubMed]
    [Google Scholar]
  6. Bai X., Zhang J., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D. V., Tsukerman K., Walunas T., Lapidus A.. & other authors ( 2006;). Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. . J Bacteriol 188:, 3682–3696. [CrossRef][PubMed]
    [Google Scholar]
  7. Bonnot F., de Franqueville H., Lourenço E.. ( 2010;). Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique. . Phytopathology 100:, 300–312. [CrossRef][PubMed]
    [Google Scholar]
  8. Clement C. R., Zizumbo-Villarreal D., Brown C. H., Gerard Ward R., Alves-Pereira A., Harries H. C.. ( 2013;). Coconuts in the Americas. . Bot Rev 79:, 342–370. [CrossRef]
    [Google Scholar]
  9. Dabek A. J., Johnson C. G., Harries H. C.. ( 1976;). Mycoplasma-like organisms associated with Kaïncopé and Cape St Paul wilt diseases of coconut palms in West Africa. . Pest Artic New Summ 22:, 354–358.
    [Google Scholar]
  10. Danyo G.. ( 2011;). Review of scientific research into the Cape Saint Paul wilt disease (CSPWD) of coconut in Ghana. . Afr J Agric Res 6:, 4567–4578.
    [Google Scholar]
  11. Davis R. E., Dally E. L., Gundersen D. E., Lee I.-M., Habili N.. ( 1997;). Candidatus phytoplasma australiense,” a new phytoplasma taxon associated with Australian grapevine yellows. . Int J Syst Bacteriol 47:, 262–269. [CrossRef][PubMed]
    [Google Scholar]
  12. Davis R. E., Jomantiene R., Zhao Y.. ( 2005;). Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. . DNA Cell Biol 24:, 832–840. [CrossRef][PubMed]
    [Google Scholar]
  13. Davis R. E., Zhao Y., Dally E. L., Jomantiene R., Lee I.-M., Wei W., Kitajima E. W.. ( 2012;). Candidatus Phytoplasma sudamericanum’, a novel taxon, and strain PassWB-Br4, a new subgroup 16SrIII-V phytoplasma, from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.). . Int J Syst Evol Microbiol 62:, 984–989. [CrossRef][PubMed]
    [Google Scholar]
  14. Davis R. E., Zhao Y., Dally E. L., Lee I.-M., Jomantiene R., Douglas S. M.. ( 2013;). Candidatus Phytoplasma pruni’, a novel taxon associated with X-disease of stone fruits, Prunus spp.: multilocus characterization based on 16S rRNA, secY, and ribosomal protein genes. . Int J Syst Evol Microbiol 63:, 766–776. [CrossRef][PubMed]
    [Google Scholar]
  15. Deng S., Hiruki C.. ( 1991;). Amplification of 16S rRNA genes from culturable and non-culturable mollicutes. . J Microbiol Methods 14:, 53–61. [CrossRef]
    [Google Scholar]
  16. Dery S. K., Philippe R., Baudouin L., Quaicoe R. N., Nkansah-Poku J., Owusu-Nipah J., Arthur R., Dare D., Yankey N., Dollet M.. ( 2008;). Genetic diversity among coconut varieties for susceptibility to Cape St Paul Wilt Disease. . Euphytica 164:, 1–11. [CrossRef]
    [Google Scholar]
  17. Dollet M., Giannotti J., Renard J. L., Ghosh S. K.. ( 1977;). Etude d'un jaunissement létal des cocotiers au Cameroun: la maladie de Kribi. Observations d'organismes de type Mycoplasmes. . Oléagineux 32:, 317–322.
    [Google Scholar]
  18. Dollet M., Quaicoe R., Pilet F.. ( 2009;). Review of coconut “lethal yellowing” type diseases. Diversity, variability and diagnosis. . Oilseed Fats Crops Lipids 16:, 97–101. [CrossRef]
    [Google Scholar]
  19. Dollet M., Macome F., Vaz A., Fabre S.. ( 2011;). Phytoplasmas identical to coconut lethal yellowing phytoplasmas from Zambesia (Mozambique) found in a pentatomide bug in Cabo Delgado province. . Bull Insectol 64: (Suppl.), S139–S140.
    [Google Scholar]
  20. Eden-Green S. J.. ( 1997;). History, distribution and present status of lethal yellowing-like diseases of palms. . In Proceedings of an International Workshop on Lethal Yellowing-Like Diseases of Coconut, Elmina, Ghana, November 1995, pp. 17–25. Edited by Eden-Green S. J., Ofori F... Chatham, UK:: Natural Resources Institute;.
    [Google Scholar]
  21. Ekpo E. N., Ojomo E. E.. ( 1990;). The spread of lethal coconut diseases in West Africa: incidence of Awka disease (or bronze leaf wilt) in the Ishan area of Bendel state of Nigeria. . Principes 34:, 143–146.
    [Google Scholar]
  22. Eziashi E., Omamor I.. ( 2010;). Lethal yellowing disease of the coconut palms (Cocos nucifera L.): an overview of the crises. . Afr J Biotechnol 9:, 9122–9127.
    [Google Scholar]
  23. Gasparich G. E.. ( 2010;). Spiroplasmas and phytoplasmas: microbes associated with plant hosts. . Biologicals 38:, 193–203. [CrossRef][PubMed]
    [Google Scholar]
  24. Griffiths H. M., Sinclair W. A., Smart C. D., Davis R. E.. ( 1999;). The phytoplasma associated with ash yellows and lilac witches’-broom: ‘Candidatus phytoplasma fraxini’. . Int J Syst Bacteriol 49:, 1605–1614. [CrossRef][PubMed]
    [Google Scholar]
  25. Gundersen D. E., Lee I.-M., Rehner S. A., Davis R. E., Kingsbury D. T.. ( 1994;). Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. . J Bacteriol 176:, 5244–5254.[PubMed]
    [Google Scholar]
  26. Gunn B. F., Baudouin L., Olsen K. M.. ( 2011;). Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. . PLoS ONE 6:, e21143. [CrossRef][PubMed]
    [Google Scholar]
  27. Harrison N. A., Helmick E. E., Elliott M. L.. ( 2009;). First report of a phytoplasma-associated lethal decline of Sabal palmetto in Florida, USA. . Plant Pathol 58:, 792. [CrossRef]
    [Google Scholar]
  28. Harrison N. A., Davis R. E., Helmick E. E.. ( 2013;). DNA extraction from arborescent monocots and how to deal with other challenging hosts. . Methods Mol Biol 938:, 147–158. [CrossRef][PubMed]
    [Google Scholar]
  29. Hiruki C., Wang K.. ( 2004;). Clover proliferation phytoplasma: ‘Candidatus Phytoplasma trifolii’. . Int J Syst Evol Microbiol 54:, 1349–1353. [CrossRef][PubMed]
    [Google Scholar]
  30. Hodgetts J., Boonham N., Mumford R., Harrison N., Dickinson M.. ( 2008;). Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. . Int J Syst Evol Microbiol 58:, 1826–1837. [CrossRef][PubMed]
    [Google Scholar]
  31. IRPCM ( 2004;). Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. . Int J Syst Evol Microbiol 54:, 1243–1255. [CrossRef][PubMed]
    [Google Scholar]
  32. Jomantiene R., Zhao Y., Davis R. E.. ( 2007;). Sequence-variable mosaics: composites of recurrent transposition characterizing the genomes of phylogenetically diverse phytoplasmas. . DNA Cell Biol 26:, 557–564. [CrossRef][PubMed]
    [Google Scholar]
  33. Jung H.-Y., Sawayanagi T., Kakizawa S., Nishigawa H., Miyata S., Oshima K., Ugaki M., Lee J. T., Hibi T., Namba S.. ( 2002;). Candidatus Phytoplasma castaneae’, a novel phytoplasma taxon associated with chestnut witches’ broom disease. . Int J Syst Evol Microbiol 52:, 1543–1549. [CrossRef][PubMed]
    [Google Scholar]
  34. Jung H.-Y., Sawayanagi T., Kakizawa S., Nishigawa H., Wei W., Oshima K., Miyata S., Ugaki M., Hibi T., Namba S.. ( 2003a;). Candidatus Phytoplasma ziziphi’, a novel phytoplasma taxon associated with jujube witches’-broom disease. . Int J Syst Evol Microbiol 53:, 1037–1041. [CrossRef][PubMed]
    [Google Scholar]
  35. Jung H.-Y., Sawayanagi T., Wongkaew P., Kakizawa S., Nishigawa H., Wei W., Oshima K., Miyata S., Ugaki M.. & other authors ( 2003b;). Candidatus Phytoplasma oryzae’, a novel phytoplasma taxon associated with rice yellow dwarf disease. . Int J Syst Evol Microbiol 53:, 1925–1929. [CrossRef][PubMed]
    [Google Scholar]
  36. Kollar A., Seemüller E.. ( 1989;). Base composition of the DNA of mycoplasmalike organisms associated with various plant diseases. . J Phytopathol 127:, 177–186. [CrossRef]
    [Google Scholar]
  37. Konan Konan J. L., Allou K., Atta Diallo H., Saraka Yao D., Koua B., Kouassi N., Benabid R., Michelutti R., Scott J., Arocha-Rosete Y.. ( 2013;). First report on the molecular identification of the phytoplasma associated with a lethal yellowing-type disease of coconut palms in Côte d’Ivoire. . New Dis Rep 28:, 3. [CrossRef]
    [Google Scholar]
  38. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E.. ( 2008;). The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. . BMC Genomics 9:, 306. [CrossRef][PubMed]
    [Google Scholar]
  39. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bartoszyk I. M.. ( 1998;). Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequences. . Int J Syst Bacteriol 48:, 1153–1169. [CrossRef]
    [Google Scholar]
  40. Lee I.-M., Davis R. E., Gundersen-Rindal D. E.. ( 2000;). Phytoplasma: phytopathogenic mollicutes. . Annu Rev Microbiol 54:, 221–255. [CrossRef][PubMed]
    [Google Scholar]
  41. Lee I.-M., Gundersen-Rindal D. E., Davis R. E., Bottner K. D., Marcone C., Seemüller E.. ( 2004a;). Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. . Int J Syst Evol Microbiol 54:, 1037–1048. [CrossRef][PubMed]
    [Google Scholar]
  42. Lee I.-M., Martini M., Marcone C., Zhu S. F.. ( 2004b;). Classification of phytoplasma strains in the elm yellows group (16SrV) and proposal of ‘Candidatus Phytoplasma ulmi’ for the phytoplasma associated with elm yellows. . Int J Syst Evol Microbiol 54:, 337–347. [CrossRef][PubMed]
    [Google Scholar]
  43. Lee I.-M., Bottner K. D., Secor G., Rivera-Varas V.. ( 2006;). Candidatus Phytoplasma americanum’, a phytoplasma associated with a potato purple top wilt disease complex. . Int J Syst Evol Microbiol 56:, 1593–1597. [CrossRef][PubMed]
    [Google Scholar]
  44. Lee I.-M., Bottner-Parker K. D., Zhao Y., Villalobos W., Moreira L.. ( 2011;). Candidatus Phytoplasma costaricanum’ a novel phytoplasma associated with an emerging disease in soybean (Glycine max). . Int J Syst Evol Microbiol 61:, 2822–2826. [CrossRef][PubMed]
    [Google Scholar]
  45. Makarova O., Contaldo N., Paltrinieri S., Kawube G., Bertaccini A., Nicolaisen M.. ( 2012;). DNA barcoding for identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. . PLoS ONE 7:, e52092. [CrossRef][PubMed]
    [Google Scholar]
  46. Malembic-Maher S., Salar P., Filippin L., Carle P., Angelini E., Foissac X.. ( 2011;). Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. . Int J Syst Evol Microbiol 61:, 2129–2134. [CrossRef][PubMed]
    [Google Scholar]
  47. Marcone C., Neimark H., Ragozzino A., Lauer U., Seemüller E.. ( 1999;). Chromosome sizes of phytoplasmas composing major phylogenetic groups and subgroups. . Phytopathology 89:, 805–810. [CrossRef][PubMed]
    [Google Scholar]
  48. Marcone C., Gibb K. S., Streten C., Schneider B.. ( 2004a;). Candidatus Phytoplasma spartii’, ‘Candidatus Phytoplasma rhamni’ and ‘Candidatus Phytoplasma allocasuarinae’, respectively associated with spartium witches’-broom, buckthorn witches’-broom and allocasuarina yellows diseases. . Int J Syst Evol Microbiol 54:, 1025–1029. [CrossRef][PubMed]
    [Google Scholar]
  49. Marcone C., Schneider B., Seemüller E.. ( 2004b;). Candidatus Phytoplasma cynodontis’, the phytoplasma associated with Bermuda grass white leaf disease. . Int J Syst Evol Microbiol 54:, 1077–1082. [CrossRef][PubMed]
    [Google Scholar]
  50. Martinez S., Cordova I., Maust B. E., Oropeza C., Santamaria J. M.. ( 2000;). Is abscisic acid responsible for abnormal stomatal closure in coconut palms showing lethal yellowing. ? J Plant Physiol 156:, 319–322. [CrossRef]
    [Google Scholar]
  51. Martini M., Marcone C., Mitrović J., Maixner M., Delić D., Myrta A., Ermacora P., Bertaccini A., Duduk B.. ( 2012;). Candidatus Phytoplasma convolvuli’, a new phytoplasma taxon associated with bindweed yellows in four European countries. . Int J Syst Evol Microbiol 62:, 2910–2915. [CrossRef][PubMed]
    [Google Scholar]
  52. McCoy R. E., Caudwell A., Chang C. J., Chen T. A., Chiykowski L. N., Cousin M. T., Dale J. L., deLeeuw G. T. N., Golino D. A.. & other authors ( 1989;). Plant diseases associated with mycoplasma-like organisms. . In The Mycoplasmas, vol. 5, pp. 545–640. Edited by Whitcomb R. F., Tully J. G... San Diego:: Academic Press;. [CrossRef]
    [Google Scholar]
  53. Montano H. G., Davis R. E., Dally E. L., Hogenhout S., Pimentel J. P., Brioso P. S.. ( 2001;). Candidatus Phytoplasma brasiliense’, a new phytoplasma taxon associated with hibiscus witches’ broom disease. . Int J Syst Evol Microbiol 51:, 1109–1118. [CrossRef][PubMed]
    [Google Scholar]
  54. Mpunami A. A., Tymon A., Jones P., Dickinson M. J.. ( 1999;). Genetic diversity in the coconut lethal yellowing disease phytoplasmas of East Africa. . Plant Pathol 48:, 109–114. [CrossRef]
    [Google Scholar]
  55. Murray R. G. E., Stackebrandt E.. ( 1995;). Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. . Int J Syst Bacteriol 45:, 186–187. [CrossRef][PubMed]
    [Google Scholar]
  56. Neimark H., Kirkpatrick B. C.. ( 1993;). Isolation and characterization of full-length chromosomes from non-culturable plant-pathogenic Mycoplasma-like organisms. . Mol Microbiol 7:, 21–28. [CrossRef][PubMed]
    [Google Scholar]
  57. Nejat N., Vadamalai G., Davis R. E., Harrison N. A., Sijam K., Dickinson M., Abdullah S. N. A., Zhao Y.. ( 2013;). Candidatus Phytoplasma malaysianum’, a novel taxon associated with virescence and phyllody of Madagascar periwinkle (Catharanthus roseus). . Int J Syst Evol Microbiol 63:, 540–548. [CrossRef][PubMed]
    [Google Scholar]
  58. Ntushelo K., Harrison N. A., Elliott M. E.. ( 2013;). Palm phytoplasmas in the Caribbean basin. . Palms 57:, 93–100.
    [Google Scholar]
  59. Nutman F. J., Roberts F. M.. ( 1955;). Lethal yellowing: the ‘unknown disease’ of coconut palms in Jamaica. . Emp J Exp Agric 23:, 257–267.
    [Google Scholar]
  60. Ofori F., Nkansah-Poku J.. ( 1997;). Cape St Paul wilt disease of coconut in Ghana: history of its occurrence and spread. . In Proceedings of an International Workshop on Lethal Yellowing-Like Diseases of Coconut, Elmina, Ghana, November 1995, pp. 27–32. Edited by Eden-Green S. J., Ofori F... Chatham, UK:: Natural Resources Institute;.
    [Google Scholar]
  61. Ogle L., Harries H.. ( 2005;). Introducing the vector: how coconut lethal yellowing disease may have reached the Caribbean. . Ethnobot Res Appl 3:, 139–142.
    [Google Scholar]
  62. Oshima K., Kakizawa S., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S.. & other authors ( 2004;). Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. . Nat Genet 36:, 27–29. [CrossRef][PubMed]
    [Google Scholar]
  63. Persley G. J.. ( 1992;). Replanting the Tree of Life: Toward an International Agenda for Coconut Palm Research. Wallingford, UK:: CAB International;.
    [Google Scholar]
  64. Plavsic-Banjac B., Hunt P., Maromorosch K.. ( 1972;). Mycoplasma-like bodies associated with lethal yellowing disease of coconut palms. . Phytopathology 62:, 288–289.
    [Google Scholar]
  65. Quaglino F., Zhao Y., Casati P., Bulgari D., Bianco P. A., Wei W., Davis R. E.. ( 2013;). Candidatus Phytoplasma solani’, a novel taxon associated with stolbur- and bois noir-related diseases of plants. . Int J Syst Evol Microbiol 63:, 2879–2894. [CrossRef][PubMed]
    [Google Scholar]
  66. Sawayanagi T., Horikoshi N., Kanehira T., Shinohara M., Bertaccini A., Cousin M. T., Hiruki C., Namba S.. ( 1999;). Candidatus phytoplasma japonicum’, a new phytoplasma taxon associated with Japanese hydrangea phyllody. . Int J Syst Bacteriol 49:, 1275–1285. [CrossRef][PubMed]
    [Google Scholar]
  67. Schneider B., Torres E., Martín M. P., Schröder M., Behnke H. D., Seemüller E.. ( 2005;). Candidatus Phytoplasma pini’, a novel taxon from Pinus silvestris and Pinus halepensis. . Int J Syst Evol Microbiol 55:, 303–307. [CrossRef][PubMed]
    [Google Scholar]
  68. Schuiling M., Harries H. C.. ( 1994;). The coconut palm in East Africa. 1. East African Tall. . Principes 38:, 4–11.
    [Google Scholar]
  69. Schuiling M., Mpunami A.. ( 1992;). Lethal disease of coconut palm in Tanzania. I. Comparison with other coconut diseases in East Africa. . Oleagineux 47:, 511–515.
    [Google Scholar]
  70. Schuiling M., Mpunami A., Kaiza D.. ( 1992a;). Lethal disease of coconut palm in Tanzania. II. History, distribution and epidemiology. . Oleagineux 47:, 516–522.
    [Google Scholar]
  71. Schuiling M., Mpunami A., Kaiza D. A., Harries H.. ( 1992b;). Lethal disease of coconut palm in Tanzania. 3. Low resistance of imported germplasm. . Oleagineux 47:, 693–697.
    [Google Scholar]
  72. Seemüller E., Schneider B.. ( 2004;). Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. . Int J Syst Evol Microbiol 54:, 1217–1226. [CrossRef][PubMed]
    [Google Scholar]
  73. Seemüller E., Marcone C., Lauer U., Ragozzino A., Göschl M.. ( 1998;). Current status of molecular classification of the phytoplasmas. . J Plant Pathol 80:, 3–26.
    [Google Scholar]
  74. Smart C. D., Schneider B., Blomquist C. L., Guerra L. J., Harrison N. A., Ahrens U., Lorenz K.-H., Seemüller E., Kirkpatrick B. C.. ( 1996;). Phytoplasma-specific PCR primers based on sequences of the 16S-23S rRNA spacer region. . Appl Environ Microbiol 62:, 2988–2993.[PubMed]
    [Google Scholar]
  75. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  76. Tran-Nguyen L. T. T., Gibb K. S.. ( 2007;). Optimizing phytoplasma DNA purification for genome analysis. . J Biomol Tech 18:, 104–112.[PubMed]
    [Google Scholar]
  77. Tran-Nguyen L. T., Kube M., Schneider B., Reinhardt R., Gibb K. S.. ( 2008;). Comparative genome analysis of “Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “Ca. Phytoplasma asteris” strains OY-M and AY-WB. . J Bacteriol 190:, 3979–3991. [CrossRef][PubMed]
    [Google Scholar]
  78. Tymon A. M., Jones P., Harrison N. A.. ( 1997;). Detection and differentiation of African coconut phytoplasmas: RFLP analysis of PCR-amplified 16S rDNA and DNA hybridisation. . Ann Appl Biol 131:, 91–102. [CrossRef]
    [Google Scholar]
  79. Tymon A. M., Jones P., Harrison N. A.. ( 1998;). Phylogenetic relationships of coconut phytoplasmas and the development of specific oligonucleotide PCR primers. . Ann Appl Biol 132:, 437–452. [CrossRef]
    [Google Scholar]
  80. Valiunas D., Staniulis J., Davis R. E.. ( 2006;). Candidatus Phytoplasma fragariae’, a novel phytoplasma taxon discovered in yellows diseased strawberry, Fragaria × ananassa. . Int J Syst Evol Microbiol 56:, 277–281. [CrossRef][PubMed]
    [Google Scholar]
  81. Verdin E., Salar P., Danet J.-L., Choueiri E., Jreijiri F., El Zammar S., Gélie B., Bové J. M., Garnier M.. ( 2003;). Candidatus Phytoplasma phoenicium’ sp. nov., a novel phytoplasma associated with an emerging lethal disease of almond trees in Lebanon and Iran. . Int J Syst Evol Microbiol 53:, 833–838. [CrossRef][PubMed]
    [Google Scholar]
  82. Wei W., Davis R. E., Lee I.-M., Zhao Y.. ( 2007;). Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. . Int J Syst Evol Microbiol 57:, 1855–1867. [CrossRef][PubMed]
    [Google Scholar]
  83. Wei W., Davis R. E., Jomantiene R., Zhao Y.. ( 2008;). Ancient, recurrent phage attacks and recombination shaped dynamic sequence-variable mosaics at the root of phytoplasma genome evolution. . Proc Natl Acad Sci U S A 105:, 11827–11832. [CrossRef][PubMed]
    [Google Scholar]
  84. Weintraub P. G., Beanland L.. ( 2006;). Insect vectors of phytoplasmas. . Annu Rev Entomol 51:, 91–111. [CrossRef][PubMed]
    [Google Scholar]
  85. White D. T., Blackall L. L., Scott P. T., Walsh K. B.. ( 1998;). Phylogenetic positions of phytoplasmas associated with dieback, yellow crinkle and mosaic diseases of papaya, and their proposed inclusion in ‘Candidatus Phytoplasma australiense’ and a new taxon, ‘Candidatus Phytoplasma australasia’. . Int J Syst Bacteriol 48:, 941–951. [CrossRef][PubMed]
    [Google Scholar]
  86. Win N. K. K., Lee S.-Y., Bertaccini A., Namba S., Jung H.-Y.. ( 2013;). Candidatus Phytoplasma balanitae’ associated with witches’ broom disease of Balanites triflora. . Int J Syst Evol Microbiol 63:, 636–640. [CrossRef][PubMed]
    [Google Scholar]
  87. Zhao Y., Sun Q., Wei W., Davis R. E., Wu W., Liu Q.. ( 2009a;). Candidatus Phytoplasma tamaricis’, a novel taxon discovered in witches’-broom-diseased salt cedar (Tamarix chinensis Lour.). . Int J Syst Evol Microbiol 59:, 2496–2504. [CrossRef][PubMed]
    [Google Scholar]
  88. Zhao Y., Wei W., Lee I.-M., Shao J., Suo X., Davis R. E.. ( 2009b;). Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). . Int J Syst Evol Microbiol 59:, 2582–2593. [CrossRef][PubMed]
    [Google Scholar]
  89. Zreik L., Carle P., Bové J. M., Garnier M.. ( 1995;). Characterization of the mycoplasmalike organism associated with witches’-broom disease of lime and proposition of a Candidatus taxon for the organism, “Candidatus phytoplasma aurantifolia”. . Int J Syst Bacteriol 45:, 449–453. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.060053-0
Loading
/content/journal/ijsem/10.1099/ijs.0.060053-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error