1887

Abstract

A Gram-staining-negative, yellow-pigmented, strictly aerobic, zeaxanthin-producing, rod-shaped, non-endospore-forming, appendaged bacterial strain that exhibits gliding motility, designated CC-AMSZ-T, was isolated from marine sediment off coastal Kending, Taiwan. Strain CC-AMSZ-T shared 94.9 % and 96.7–94.1 % 16S rRNA gene sequence similarities with KMM 6050 and other species of the genus , respectively, and formed a distinct phyletic lineage in phylogenetic trees. The major (≥5 % of the total) fatty acids were C, iso-C, anteiso-C, Cω6 and/or Cω7 and iso-Cω9 and/or C 10-methyl. Phosphatidylethanolamine, six unidentified lipids and three unidentified aminolipids were the polar lipid components. The DNA G+C content was 38.6 mol%. The predominant respiratory quinone was menaquinone-6 (MK-6). Based on the phylogenetic distinctiveness and distinguishing phenotypic characteristics, strain CC-AMSZ-T represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CC-AMSZ-T ( = JCM 18809 = BCRC 80547).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059881-0
2014-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2675.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059881-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  2. Bauer M., Kube M., Teeling H., Richter M., Lombardot T., Allers E., Würdemann C. A., Quast C., Kuhl H.. & other authors ( 2006;). Whole genome analysis of the marine BacteroidetesGramella forsetii’ reveals adaptations to degradation of polymeric organic matter. . Environ Microbiol 8:, 2201–2213. [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F.. ( 2011;). Family I. Flavobacteriaceae Reichenbach 1992. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 106–111. Edited by Krieg N. R., Staley J. T., Brown D. R., Hedlund B. P., Paster B. J., Ward N. L., Ludwig W., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  4. Bernardet J.-F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . In The Prokaryotes: a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  6. Cho S. H., Chae S. H., Cho M., Kim T. U., Choi S., Han J. H., Kim Y. T., Joung Y., Joh K.. & other authors ( 2011;). Gramella gaetbulicola sp. nov., a member of the family Flavobacteriaceae isolated from foreshore soil. . Int J Syst Evol Microbiol 61:, 2654–2658. [CrossRef][PubMed]
    [Google Scholar]
  7. Collins M. D.. ( 1985;). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  8. Embley T. M., Wait R.. ( 1994;). Structural lipids of eubacteria. . In Chemical Methods in Prokaryotic Systematics, pp. 121–161. Edited by Goodfellow M., O’Donnell A. G... Chichester:: Wiley;.
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Fitch W. M.. ( 1971;). Towards defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  12. GCG ( 1995;). Wisconsin Package Version 8.1 Program Manual. Madison, WI:: Genetic Computer Group;.
    [Google Scholar]
  13. Hameed A., Arun A. B., Ho H.-P., Chang C.-M., Rekha P. D., Lee M.-R., Singh S., Young C.-C.. ( 2011;). Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T. . J Agric Food Chem 59:, 4119–4124. [CrossRef][PubMed]
    [Google Scholar]
  14. Hameed A., Shahina M., Lin S.-Y., Sridhar K. R., Young L.-S., Lee M.-R., Chen W.-M., Chou J.-H., Young C.-C.. ( 2012;). Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. . FEMS Microbiol Lett 333:, 37–45. [CrossRef][PubMed]
    [Google Scholar]
  15. Hameed A., Shahina M., Lin S.-Y., Cho J. C., Lai W.-A., Young C.-C.. ( 2013;). Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. . Int J Syst Evol Microbiol 63:, 4790–4796. [CrossRef][PubMed]
    [Google Scholar]
  16. Hameed A., Shahina M., Lin S.-Y., Lai W.-A., Hsu Y.-H., Liu Y.-C., Young C.-C.. ( 2014;). Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. . Int J Syst Evol Microbiol 64:, 138–145. [CrossRef][PubMed]
    [Google Scholar]
  17. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y.. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. . Genome Res 8:, 557–561.[PubMed]
    [Google Scholar]
  18. Jeong S. H., Jin H. M., Jeon C. O.. ( 2013;). Gramella aestuarii sp. nov., isolated from a tidal flat, and emended description of Gramella echinicola. . Int J Syst Evol Microbiol 63:, 2872–2878. [CrossRef][PubMed]
    [Google Scholar]
  19. Joung Y., Kim H., Jang T., Ahn T. S., Joh K.. ( 2011;). Gramella jeungdoensis sp. nov., isolated from a solar saltern in Korea. . J Microbiol 49:, 1022–1026. [CrossRef][PubMed]
    [Google Scholar]
  20. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. . Can J Microbiol 42:, 989–1005. [CrossRef]
    [Google Scholar]
  21. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  23. Kirchman D. L.. ( 2002;). The ecology of Cytophaga-Flavobacteria in aquatic environments. . FEMS Microbiol Ecol 39:, 91–100.[PubMed]
    [Google Scholar]
  24. Lau S. C., Tsoi M. M., Li X., Plakhotnikova I., Dobretsov S., Wong P. K., Qian P. Y.. ( 2005;). Gramella portivictoriae sp. nov., a novel member of the family Flavobacteriaceae isolated from marine sediment. . Int J Syst Evol Microbiol 55:, 2497–2500. [CrossRef][PubMed]
    [Google Scholar]
  25. Liu K., Li S., Jiao N., Tang K.. ( 2014;). Gramella flava sp. nov., a member of the family Flavobacteriaceae isolated from seawater. . Int J Syst Evol Microbiol 64:, 165–168. [CrossRef][PubMed]
    [Google Scholar]
  26. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  27. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  28. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Nedashkovskaya O. I., Kim S. B., Lysenko A. M., Frolova G. M., Mikhailov V. V., Bae K. S., Lee D. H., Kim I. S.. ( 2005;). Gramella echinicola gen. nov., sp. nov., a novel halophilic bacterium of the family Flavobacteriaceae isolated from the sea urchin Strongylocentrotus intermedius. . Int J Syst Evol Microbiol 55:, 391–394. [CrossRef][PubMed]
    [Google Scholar]
  30. Nedashkovskaya O. I., Kim S. B., Bae K. S.. ( 2010;). Gramella marina sp. nov., isolated from the sea urchin Strongylocentrotus intermedius. . Int J Syst Evol Microbiol 60:, 2799–2802. [CrossRef][PubMed]
    [Google Scholar]
  31. Reichenbach H.. ( 1992;). The order Cytophagales. . In The Prokaryotes, , 2nd edn., vol. 4, pp. 3631–3675. Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H... New York:: Springer;. [CrossRef]
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  33. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . USFCC Newsl 20:, 16.
    [Google Scholar]
  34. Shahina M., Hameed A., Lin S.-Y., Hsu Y.-H., Liu Y.-C., Cheng I.-C., Lee M.-R., Lai W.-A., Lee R.-J., Young C.-C.. ( 2013;). Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. . Int J Syst Evol Microbiol 63:, 3415–3422. [CrossRef][PubMed]
    [Google Scholar]
  35. Shahina M., Hameed A., Lin S.-Y., Lee R.-J., Lee M.-R., Young C.-C.. ( 2014;). Gramella planctonica sp. nov., a zeaxanthin-producing bacterium isolated from surface seawater, and emended descriptions of Gramella aestuarii and Gramella echinicola. . Antonie van Leeuwenhoek 105:, 771–779. [CrossRef][PubMed]
    [Google Scholar]
  36. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  37. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  39. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  40. Watts D., MacBeath J. R.. ( 2001;). Automated fluorescent DNA sequencing on the ABI PRISM 310 Genetic Analyzer. . Methods Mol Biol 167:, 153–170.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059881-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059881-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error