1887

Abstract

The bacterial symbionts SF41 and SF783 were isolated from populations of the insect pathogenic nematode collected in South Africa. Both strains were closely related to strain Q614 isolated from a population of sp. collected from soil in Australia in the 1980s. Sequence analysis based on a multigene approach, DNA–DNA hybridization data and phenotypic traits showed that strains SF41, SF783 and Q614 belong to the same species of the genus with subsp. as the most closely related taxon (DNA–DNA hybridization value of 68 %). Moreover, the phylogenetic position of subsp. DSM 19724 initially determined using the sequences, was reconsidered in the light of the data obtained by our multigene approach and DNA–DNA hybridization experiments. Strains SF41, SF783 and Q614 represent a novel species of the genus , for which the name sp. nov. is proposed (type strain SF41 = ATCC BAA-2479 = DSM 25263).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059840-0
2014-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1540.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059840-0&mimeType=html&fmt=ahah

References

  1. Akhurst R. J.. ( 1982;). Antibiotic activity of Xenorhabdus spp., bacteria symbiotically associated with insect pathogenic nematodes of the families Heterorhabditidae and Steinernematidae. . J Gen Microbiol 128:, 3061–3065.[PubMed]
    [Google Scholar]
  2. Akhurst R. J., Boemare N. E.. ( 1986;). A non-luminescent strain of Xenorhabdus luminescens (Enterobacteriaceae). . J Gen Microbiol 132:, 1917–1922. [CrossRef]
    [Google Scholar]
  3. Akhurst R. J., Boemare N. E., Janssen P. H., Peel M. M., Alfredson D. A., Beard C. E.. ( 2004;). Taxonomy of Australian clinical isolates of the genus Photorhabdus and proposal of Photorhabdus asymbiotica subsp. asymbiotica subsp. nov. and P. asymbiotica subsp. australis subsp. nov.. Int J Syst Evol Microbiol 54:, 1301–1310. [CrossRef][PubMed]
    [Google Scholar]
  4. An R., Grewal P. S.. ( 2010;). Photorhabdus temperata subsp. stackebrandtii subsp. nov. (Enterobacteriales: Enterobacteriaceae). . Curr Microbiol 61:, 291–297. [CrossRef][PubMed]
    [Google Scholar]
  5. An R., Grewal P. S.. ( 2011;). Photorhabdus luminescens subsp. kleinii subsp. nov. (Enterobacteriales: Enterobacteriaceae). . Curr Microbiol 62:, 539–543. [CrossRef][PubMed]
    [Google Scholar]
  6. Au C., Dean P., Reynolds S. E., ffrench-Constant R. H.. ( 2004;). Effect of the insect pathogenic bacterium Photorhabdus on insect phagocytes. . Cell Microbiol 6:, 89–95. [CrossRef][PubMed]
    [Google Scholar]
  7. Boemare N. E., Akhurst R. J.. ( 1988;). Biochemical and physiological characterization of colony form variants in Xenorhabdus spp. (Enterobacteriaceae). . J Gen Microbiol 134:, 751–761. [CrossRef]
    [Google Scholar]
  8. Boemare N. E., Akhurst R. J., Mourant R. G.. ( 1993;). DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov.. Int J Syst Bacteriol 43:, 249–255. [CrossRef]
    [Google Scholar]
  9. Castresana J.. ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17:, 540–552. [CrossRef][PubMed]
    [Google Scholar]
  10. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  11. Dereeper A., Guignon V., Blanc G., Audic S., Buffet S., Chevenet F., Dufayard J. F., Guindon S., Lefort V.. & other authors ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: (Web Server issue), W465–W469. [CrossRef][PubMed]
    [Google Scholar]
  12. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  13. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39:, 224–229.
    [Google Scholar]
  14. Felsenstein J.. ( 1988;). Phylogenies from molecular sequences: inference and reliability. . Annu Rev Genet 22:, 521–565. [CrossRef][PubMed]
    [Google Scholar]
  15. Felske A., Rheims H., Wolterink A., Stackebrandt E., Akkermans A. D. L.. ( 1997;). Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. . Microbiology 143:, 2983–2989. [CrossRef][PubMed]
    [Google Scholar]
  16. Ferreira T., van Reenen C., Pagès S., Tailliez P., Malan A. P., Dicks L. M. T.. ( 2013a;). Photorhabdus luminescens subsp. noenieputensis subsp. nov., a symbiotic bacterium associated with a novel Heterorhabditis species related to Heterorhabditis indica. . Int J Syst Evol Microbiol 63:, 1853–1858. [CrossRef][PubMed]
    [Google Scholar]
  17. Ferreira T., van Reenen C. A., Endo A., Spröer C., Malan A. P., Dicks L. M. T.. ( 2013b;). Description of Xenorhabdus khoisanae sp. nov., the symbiont of the entomopathogenic nematode Steinernema khoisanae. . Int J Syst Evol Microbiol 63:, 3220–3224. [CrossRef][PubMed]
    [Google Scholar]
  18. Fischer-Le Saux M., Viallard V., Brunel B., Normand P., Boemare N. E.. ( 1999;). Polyphasic classification of the genus Photorhabdus and proposal of new taxa: P. luminescens subsp. luminescens subsp. nov., P. luminescens subsp. akhurstii subsp. nov., P. luminescens subsp. laumondii subsp. nov., P. temperata sp. nov., P. temperata subsp. temperata subsp. nov. and P. asymbiotica sp. nov.. Int J Syst Bacteriol 49:, 1645–1656. [CrossRef][PubMed]
    [Google Scholar]
  19. Givaudan A., Lanois A.. ( 2000;). flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects. . J Bacteriol 182:, 107–115. [CrossRef][PubMed]
    [Google Scholar]
  20. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  21. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. . Syst Biol 52:, 696–704. [CrossRef][PubMed]
    [Google Scholar]
  22. Hazir S., Stackebrandt E., Lang E., Schumann P., Ehlers R. U., Keskin N.. ( 2004;). Two new subspecies of Photorhabdus luminescens, isolated from Heterorhabditis bacteriophora (Nematoda: Heterorhabditidae): Photorhabdus luminescens subsp. kayaii subsp. nov. and Photorhabdus luminescens subsp. thracensis subsp. nov.. Syst Appl Microbiol 27:, 36–42. [CrossRef][PubMed]
    [Google Scholar]
  23. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  24. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  25. Koppenhöfer H. S.. ( 2007;). Bacterial symbionts of Steinernema and Heterorhabditis. . In Entomopathogenic Nematodes: Systematics, Phylogeny and Bacterial Symbionts, pp. 735–808. Edited by Nguyen K... Leiden:: Brill;. [CrossRef]
    [Google Scholar]
  26. Malan A. P., Nguyen K. B., Addison M. F.. ( 2006;). Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. . Afr Plant Prot 12:, 65–69.
    [Google Scholar]
  27. Malan A. P., Knoetze R., Moore S. D.. ( 2011;). Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. . J Invertebr Pathol 108:, 115–125. [CrossRef][PubMed]
    [Google Scholar]
  28. Maneesakorn P., An R., Daneshvar H., Taylor K., Bai X., Adams B. J., Grewal P. S., Chandrapatya A.. ( 2011;). Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). . Mol Phylogenet Evol 59:, 271–280. [CrossRef][PubMed]
    [Google Scholar]
  29. Orozco R. A., Hill T., Stock S. P.. ( 2013;). Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (γ-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). . Curr Microbiol 66:, 30–39. [CrossRef][PubMed]
    [Google Scholar]
  30. Poinar G. O.. ( 1975;). Description and biology of a new insect parasitic Rhabditoid, Heterorhabditis bacteriophora n. gen., n. sp. (Rhabditida; Heterorhabditidae n. fam.). . Nematologica 21:, 463–470. [CrossRef]
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  32. Sicard M., Hinsinger J., Le Brun N., Pagès S., Boemare N., Moulia C.. ( 2006;). Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). . BMC Evol Biol 6:, 68. [CrossRef][PubMed]
    [Google Scholar]
  33. Sierra G.. ( 1957;). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. . Antonie van Leeuwenhoek 23:, 15–22. [CrossRef][PubMed]
    [Google Scholar]
  34. Somogyi E., Saskoi A., Furgani G., Lengyel K., Mathe A., Fodor A.. ( 2002;). Isolation and characterization of bacterial symbionts of Steinernema strains of long dauer phenotype. . http://www.cost850.ch/publications/20020404_debrecen/20020404_06.pdf
    [Google Scholar]
  35. Tailliez P., Laroui C., Ginibre N., Paule A., Pagès S., Boemare N.. ( 2010;). Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp. nov., P. luminescens subsp. caribbeanensis subsp. nov., P. luminescens subsp. hainanensis subsp. nov., P. temperata subsp. khanii subsp. nov., P. temperata subsp. tasmaniensis subsp. nov., and the reclassification of P. luminescens subsp. thracensis as P. temperata subsp. thracensis comb. nov.. Int J Syst Evol Microbiol 60:, 1921–1937. [CrossRef][PubMed]
    [Google Scholar]
  36. Thomas G. M., Poinar G. O. Jr. ( 1979;). Xenorhabdus gen. nov., a genus of entomopathogenic, nematophilic bacteria of the family Enterobacteriaceae. . Int J Syst Bacteriol 29:, 352–360. [CrossRef]
    [Google Scholar]
  37. Tóth T., Lakatos T.. ( 2008;). Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. . Int J Syst Evol Microbiol 58:, 2579–2581. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059840-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059840-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error