1887

Abstract

Recently, a taxonomical re-evaluation of the genus , based on multi-locus sequence typing (MLST) analysis, has led to the proposal that the species , and should be reclassified as novel species of the genus . In the present work, new genome-scale analyses, including average nucleotide identity, genome-scale phylogeny and k-mer analysis, coupled with previously reported DNA–DNA hybridization values and biochemical characterization strongly indicate that these three species of the genus are not members of the genus , nor do they belong to the re-evaluated genus . Furthermore, data from this polyphasic study indicated that all three species constitute two new genera. We propose reclassifying and in the genus gen. nov. as comb. nov. (type strain 601/05 = LMG 24057 = DSM 19144) and comb. nov. (type strain 513/05 = LMG 23732 = DSM 18396), respectively, and in the genus gen. nov. as comb. nov. (type strain 508/05 = LMG 23730 = DSM 18397).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059832-0
2014-10-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/10/3402.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059832-0&mimeType=html&fmt=ahah

References

  1. Bowen A. B., Braden C. R.. ( 2006;). Invasive Enterobacter sakazakii disease in infants. . Emerg Infect Dis 12:, 1185–1189. [CrossRef][PubMed]
    [Google Scholar]
  2. Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P.. ( 2013;). Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. . Syst Appl Microbiol 36:, 309–319. [CrossRef][PubMed]
    [Google Scholar]
  3. Carter L., Lindsey L. A., Grim C. J., Sathyamoorthy V., Jarvis K. G., Gopinath G., Lee C., Sadowski J. A., Trach L.. & other authors ( 2013;). Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter. . Appl Environ Microbiol 79:, 734–737. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen Y. T., Lin A. C., Siu L. K., Koh T. H.. ( 2012;). Sequence of closely related plasmids encoding bla(NDM-1) in two unrelated Klebsiella pneumoniae isolates in Singapore. . PLoS ONE 7:, e48737. [CrossRef][PubMed]
    [Google Scholar]
  5. Franco A. A., Hu L., Grim C. J., Gopinath G., Sathyamoorthy V., Jarvis K. G., Lee C., Sadowski J., Kim J.. & other authors ( 2011;). Characterization of putative virulence genes on the related RepFIB plasmids harbored by Cronobacter spp.. Appl Environ Microbiol 77:, 3255–3267. [CrossRef][PubMed]
    [Google Scholar]
  6. Gopinath G. R., Grim C. J., Tall B. D., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Fanning S., Stephan R.. ( 2013;). Genome sequences of two E. pulveris strains 601/05T ( = LMG 24057T  = DSM 19144T), and 1160/04 ( = LMG 24058  = DSM 19146), isolated from fruit powder. . Genome Announc 1:, e00991–13. [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. . Int J Syst Evol Microbiol 57:, 81–91. [CrossRef][PubMed]
    [Google Scholar]
  8. Grim C. J., Gopinath G. R., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Tall B. D., Fanning S., Stephan R.. ( 2013;). Genome sequences of an Enterobacter helveticus strain, 1159/04 ( LMG 23733), isolated from fruit powder. . Genome Announc 1:, e01038–13. [CrossRef][PubMed]
    [Google Scholar]
  9. Iversen C., Druggan P., Forsythe S.. ( 2004;). A selective differential medium for Enterobacter sakazakii, a preliminary study. . Int J Food Microbiol 96:, 133–139. [CrossRef][PubMed]
    [Google Scholar]
  10. Iversen C., Lehner A., Mullane N., Bidlas E., Cleenwerck I., Marugg J., Fanning S., Stephan R., Joosten H.. ( 2007;). The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. . BMC Evol Biol 7:, 64. [CrossRef][PubMed]
    [Google Scholar]
  11. Iversen C., Mullane N., McCardell B., Tall B. D., Lehner A., Fanning S., Stephan R., Joosten H.. ( 2008;). Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov. comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis sp. nov. subsp. dublinensis subsp. nov., Cronobacter dublinensis sp. nov. subsp. lausannensis subsp. nov., and Cronobacter dublinensis sp. nov. subsp. lactaridi subsp. nov.. Int J Syst Evol Microbiol 58:, 1442–1447. [CrossRef][PubMed]
    [Google Scholar]
  12. Joseph S., Cetinkaya E., Drahovska H., Levican A., Figueras M. J., Forsythe S. J.. ( 2012;). Cronobacter condimenti sp. nov., isolated from spiced meat, and Cronobacter universalis sp. nov., a species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water and food ingredients. . Int J Syst Evol Microbiol 62:, 1277–1283. [CrossRef][PubMed]
    [Google Scholar]
  13. Kothary M. H., McCardell B. A., Frazar C. D., Deer D., Tall B. D.. ( 2007;). Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. . Appl Environ Microbiol 73:, 4142–4151. [CrossRef][PubMed]
    [Google Scholar]
  14. Lehner A., Grimm M., Rattei T., Ruepp A., Frishman D., Manzardo G. G., Stephan R.. ( 2006;). Cloning and characterization of Enterobacter sakazakii pigment genes and in situ spectroscopic analysis of the pigment. . FEMS Microbiol Lett 265:, 244–248. [CrossRef][PubMed]
    [Google Scholar]
  15. Lehner A., Fricker-Feer C., Stephan R.. ( 2012;). Identification of the recently described Cronobacter condimenti by an rpoB-gene-based PCR system. . J Med Microbiol 61:, 1034–1035. [CrossRef][PubMed]
    [Google Scholar]
  16. Poirel L., Dortet L., Bernabeu S., Nordmann P.. ( 2011;). Genetic features of blaNDM-1-positive Enterobacteriaceae.. Antimicrob Agents Chemother 55:, 5403–5407. [CrossRef][PubMed]
    [Google Scholar]
  17. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. . Proc Natl Acad Sci U S A 106:, 19126–19131. [CrossRef][PubMed]
    [Google Scholar]
  18. Stephan R., Van Trappen S., Cleenwerck I., Vancanneyt M., De Vos P., Lehner A.. ( 2007;). Enterobacter turicensis sp. nov. and Enterobacter helveticus sp. nov., isolated from fruit powder. . Int J Syst Evol Microbiol 57:, 820–826. [CrossRef][PubMed]
    [Google Scholar]
  19. Stephan R., Van Trappen S., Cleenwerck I., Iversen C., Joosten H., De Vos P., Lehner A.. ( 2008;). Enterobacter pulveris sp. nov., isolated from fruit powder, infant formula and an infant formula production environment. . Int J Syst Evol Microbiol 58:, 237–241. [CrossRef][PubMed]
    [Google Scholar]
  20. Stephan R., Grim C. J., Gopinath G. R., Mammel M. K., Sathyamoorthy V., Trach L. H., Chase H. R., Fanning S., Tall B. D.. ( 2013;). Genome sequence of Enterobacter turicensis strain, 610/05 (LMG 23731), isolated from fruit powder. . Genome Announc 1:, e00996–13. [CrossRef][PubMed]
    [Google Scholar]
  21. Stoop B., Lehner A., Iversen C., Fanning S., Stephan R.. ( 2009;). Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. . Int J Food Microbiol 136:, 165–168. [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  23. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O. K., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray T. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059832-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059832-0
Loading

Data & Media loading...

Supplements

Supplementary Data 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error