1887

Abstract

Two coccoid, non-motile, obligately anaerobic, Gram-stain-negative bacteria, occurring singly or in pairs, or as short chains, with a mean size of 1.4–2.5 µm were isolated from the faeces of two healthy human volunteers, aged 26 and 56 years, and were designated NMBHI-10 and BLPYG-7, respectively. Both the strains were affiliated to the sub-branch of the class as revealed by 16S rRNA gene sequence analysis. The isolates NMBHI-10 and BLPYG-7 showed 99.1 and 99.2 % 16S rRNA gene sequence similarity, respectively, with JCM 1772. DNA–DNA hybridization and phenotypic analysis showed that both the strains were distinct from their closest relative, JCM 1772 (42 and 53 % DNA–DNA relatedness with NMBHI-10 and BLPYG-7, respectively), but belong to the same species (DNA–DNA relatedness of 80.9 % between the isolates). According to DNA–DNA hybridization results, the coccoid strains belong to the same genospecies, and neither is related to any of the recognized species of the genus . Strains NMBHI-10 and BLPYG-7 grew in PYG broth at temperatures of between 15 and 40 °C (optimum 37 °C), but not at 45 °C. The strains utilized a range of carbohydrates as sources of carbon and energy including glucose, lactose, cellobiose, rhamnose, galactose and sucrose. Glucose fermentation resulted in the formation of volatile fatty acids, mainly caproic acid and organic acids such as succinic acid. Phylogenetic analysis, specific phenotypic characteristics and/or DNA G+C content also differentiated the strains from each other and from their closest relatives. The DNA GC contents of strains NMBHI-10 and BLPYG-7 are 57.7 and 54.9 mol%, respectively. The major fatty acids were 12 : 0 FAME and 17 : 0 CYC FAME. On the basis of these data, we conclude that strains NMBHI-10 and BLPYG-7 should be classified as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NMBHI-10 ( = DSM 25563 = MCC 2481).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059816-0
2014-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2250.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059816-0&mimeType=html&fmt=ahah

References

  1. Amann R. I., Lin C., Key R., Montgomery L., Stahl D. A.. ( 1992;). Diversity among Fibrobacter isolates: towards a phylogenetic classification. . Syst Appl Microbiol 15:, 23–31. [CrossRef]
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  3. Dighe A. S., Shouche Y. S., Ranade D. R.. ( 1998;). Selenomonas lipolytica sp. nov., an obligately anaerobic bacterium possessing lipolytic activity. . Int J Syst Bacteriol 48:, 783–791. [CrossRef][PubMed]
    [Google Scholar]
  4. Engelmann U., Weiss N.. ( 1985;). Megasphaera cerevisiae sp. nov.: a new gram-negative obligately anaerobic coccus isolated from spoiled beer. . Syst Appl Microbiol 6:, 287–290. [CrossRef]
    [Google Scholar]
  5. Faith J. J., Guruge J. L., Charbonneau M., Subramanian S., Seedorf H., Goodman A. L., Clemente J. C., Knight R., Heath A. C.. & other authors ( 2013;). The long-term stability of the human gut microbiota. . Science 341:, 1237439. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1985;). Confidence limits of phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  7. Gill S. R., Pop M., Deboy R. T., Eckburg P. B., Turnbaugh P. J., Samuel B. S., Gordon J. I., Relman D. A., Fraser-Liggett C. M., Nelson K. E.. ( 2006;). Metagenomic analysis of the human distal gut microbiome. . Science 312:, 1355–1359. [CrossRef][PubMed]
    [Google Scholar]
  8. Gillis M., De Ley J., De Cleene M.. ( 1970;). The determination of molecular weight of bacterial genome DNA from renaturation rates. . Eur J Biochem 12:, 143–153. [CrossRef][PubMed]
    [Google Scholar]
  9. Gutierrez J., Davis R. E., Lindahl I. L., Warwick E. J.. ( 1959;). Bacterial changes in the rumen during the onset of feed-lot bloat of cattle and characteristics of Peptostreptococcus elsdenii n. sp. . Appl Microbiol 7:, 16–22.[PubMed]
    [Google Scholar]
  10. Hashizume K., Tsukahara T., Yamada K., Koyama H., Ushida K.. ( 2003;). Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. . J Nutr 133:, 3187–3190.[PubMed]
    [Google Scholar]
  11. Hayashi H., Sakamoto M., Benno Y.. ( 2002a;). Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. . Microbiol Immunol 46:, 535–548. [CrossRef][PubMed]
    [Google Scholar]
  12. Hayashi H., Sakamoto M., Benno Y.. ( 2002b;). Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. . Microbiol Immunol 46:, 819–831. [CrossRef][PubMed]
    [Google Scholar]
  13. Hino T., Shimada K., Maruyama T.. ( 1994;). Substrate preference in a strain of Megasphaera elsdenii, a ruminal bacterium, and its implications in propionate production and growth competition. . Appl Environ Microbiol 60:, 1827–1831.[PubMed]
    [Google Scholar]
  14. Holdeman L. V., Moore W. E. C.. (editors) ( 1977;). V.P.I. Anaerobic Laboratory Manual. Blacksburg, USA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  15. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  16. Juvonen R., Suihko M. L.. ( 2006;). Megasphaera paucivorans sp. nov., Megasphaera sueciensis sp. nov. and Pectinatus haikarae sp. nov., isolated from brewery samples, and emended description of the genus Pectinatus. . Int J Syst Evol Microbiol 56:, 695–702. [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  18. Loveland-Curtze J., Miteva V. I., Brenchley J. E.. ( 2011;). Evaluation of a new fluorimetric DNA-DNA hybridization method. . Can J Microbiol 57:, 250–255. [CrossRef][PubMed]
    [Google Scholar]
  19. Marathe N., Shetty S., Lanjekar V., Ranade D., Shouche Y.. ( 2012;). Changes in human gut flora with age: an Indian familial study. . BMC Microbiol 12:, 222. [CrossRef][PubMed]
    [Google Scholar]
  20. Marchandin H., Jumas-Bilak E., Gay B., Teyssier C., Jean-Pierre H., de Buochberg M. S., Carrière C., Carlier J. P.. ( 2003;). Phylogenetic analysis of some Sporomusa sub-branch members isolated from human clinical specimens: description of Megasphaera micronuciformis sp. nov.. Int J Syst Evol Microbiol 53:, 547–553. [CrossRef][PubMed]
    [Google Scholar]
  21. Marchandin H., Juvonen R., Haikara A.. ( 2009;). Genus XIII. Megasphaera. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol.3. The Firmicutes, pp. 1082–1089. Edited by Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  22. Marmur J.. ( 1961;). A procedure for isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218, IN1. [CrossRef]
    [Google Scholar]
  23. Marmur J., Doty P.. ( 1961;). Thermal renaturation of deoxyribonucleic acids. . J Mol Biol 3:, 585–594. [CrossRef][PubMed]
    [Google Scholar]
  24. MIDI ( 1999;). Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE:: MIDI, Inc;.
    [Google Scholar]
  25. Ohnishi A., Bando Y., Fujimoto N., Suzuki M.. ( 2010;). Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora. . Int J Hydrogen Energy 35:, 8544–8553. [CrossRef]
    [Google Scholar]
  26. Rainey, F. A. (2009). Family X Veillonellaceae. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, vol.3. The Firmicutes, pp. 1059–1129. Edited by P. Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. Schleifer & W. B. Whitman. New York: Springer.
  27. Rogosa M.. ( 1971;). Transfer of Peptostreptococcus elsdenii Gutierrez et al. to a new genus, Megasphaera [M. elsdenii (Gutierrez et al.) comb. nov.]. . Int J Syst Bacteriol 21:, 187–189. [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  29. Sambrook J., Russell D. W.. ( 2001;). Chapter 1: Plasmids and their usefulness in Molecular Cloning 1.1. Molecular Cloning: a Laboratory Manual, , 3rd edn., vol. 1, pp. 1.32–1.37. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  30. Shetty S. A., Marathe N. P., Lanjekar V. B., Ranade D. R., Shouche Y. S.. ( 2013;). Comparative genome analysis of Megasphaera sp. reveals niche specialization and its potential role in the human gut. . PLoS ONE 8:, e79353. [CrossRef][PubMed]
    [Google Scholar]
  31. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  33. Sugihara P. T., Sutter V. L., Attebery H. R., Bricknell K. S., Finegold S. M.. ( 1974;). Isolation of Acidaminococcus fermentans and Megasphaera elsdenii from normal human feces. . Appied Microbiol 27:, 274–275.[PubMed]
    [Google Scholar]
  34. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega 4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  35. Thakker C., Bhosale S., Ranade D. R.. ( 2006;). Formation of succinic acid by Klebsiella pneumoiae MCM B-325 under aerobic and anaerobic conditions. . J Microbiol Biotechnol 16:, 870–879.
    [Google Scholar]
  36. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. R eport of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  38. Xu H. X., Kawamura Y., Li N., Zhao L., Li T. M., Li Z. Y., Shu S., Ezaki T.. ( 2000;). A rapid method for determining the G+C content of bacterial chromosomes by monitoring fluorescence intensity during DNA denaturation in a capillary tube. . Int J Syst Evol Microbiol 50:, 1463–1469. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059816-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059816-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error