1887

Abstract

Taxonomic studies were performed on an agarase-producing strain, designated WV33, isolated from faeces of Antarctic penguins. Cells of strain WV33 were Gram-staining-negative, strictly aerobic, orange and rod-shaped. Strain WV33 displayed agarase activity and was able to utilize galactose as a sole carbon source. 16S rRNA gene sequence analysis revealed that strain WV33 was closely related to TC2 (98.0 % similarity), ATCC 700810 (96.9 %) and LMG 21922 (96.1 %). The predominant cellular fatty acids were iso-C G, iso-C, C, C and summed feature 3 (comprising iso-C 2-OH and/or Cω7). Menaquinone 6 (MK-6) was the sole quinone identified, and the major pigment was zeaxanthin. The major polar lipid was phosphatidylethanolamine. DNA–DNA relatedness of strain WV33 with respect to its closest phylogenetic neighbours was 25 % for NBRC 102673, 23 % for DSM 17623 and 21 % for DSM 15719. The DNA G+C content of strain WV33 was 37±0.6 mol%. Based on the phenotypic, chemotaxonomic and phylogenetic data, strain WV33 is concluded to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WV33 ( = KCTC 32457 = CECT 8384).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059618-0
2014-08-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/8/2884.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059618-0&mimeType=html&fmt=ahah

References

  1. Agbo J. A. C., Moss M. O.. ( 1979;). The isolation and characterization of agarolytic bacteria from a low-land river. . J Gen Microbiol 115:, 355–368. [CrossRef]
    [Google Scholar]
  2. Asker D., Beppu T., Ueda K.. ( 2007a;). Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. . Int J Syst Evol Microbiol 57:, 837–843. [CrossRef][PubMed]
    [Google Scholar]
  3. Asker D., Beppu T., Ueda K.. ( 2007b;). Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. . Syst Appl Microbiol 30:, 291–296. [CrossRef][PubMed]
    [Google Scholar]
  4. Barrow G. I., Feltham R. K. A.. ( 1993;). Cowan and Steel’s Manual for the Identification of Medical Bacteria, , 3rd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  5. Bernardet J. F., Bowman J. P.. ( 2011;). Genus I. Flavobacterium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 4, pp. 112–154. Edited by Krieg N. R., Ludwig W., Whitman W., Hedlund B. P., Paster B. J., Staley J. T., Ward N., Brown D., Parte A... New York:: Springer;.
    [Google Scholar]
  6. Bernardet J. F., Nakagawa Y.. ( 2006;). An introduction to the family Flavobacteriaceae. . The Prokaryotes, a Handbook on the Biology of Bacteria, , 3rd edn., vol. 7, pp. 455–480. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  7. Bernardet J. F., Nakagawa Y., Holmes B..Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. . Int J Syst Evol Microbiol 52:, 1049–1070. [CrossRef][PubMed]
    [Google Scholar]
  8. Chi W. J., Chang Y. K., Hong S. K.. ( 2012;). Agar degradation by microorganisms and agar-degrading enzymes. . Appl Microbiol Biotechnol 94:, 917–930. [CrossRef][PubMed]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  11. Hameed A., Shahina M., Lin S. Y., Cho J. C., Lai W. A., Young C. C.. ( 2013;). Kordia aquimaris sp. nov., a zeaxanthin-producing member of the family Flavobacteriaceae isolated from surface seawater, and emended description of the genus Kordia. . Int J Syst Evol Microbiol 63:, 4790–4796. [CrossRef][PubMed]
    [Google Scholar]
  12. Hameed A., Shahina M., Lin S. Y., Lai W. A., Hsu Y. H., Liu Y. C., Young C. C.. ( 2014;). Aquibacter zeaxanthinifaciens gen. nov., sp. nov., a zeaxanthin-producing bacterium of the family Flavobacteriaceae isolated from surface seawater, and emended descriptions of the genera Aestuariibaculum and Gaetbulibacter. . Int J Syst Evol Microbiol 64:, 138–145. [CrossRef][PubMed]
    [Google Scholar]
  13. Heo J. S., Kim S. H., Lee P. C.. ( 2013;). New insight into the cleavage reaction of Nostoc sp. strain PCC 7120 carotenoid cleavage dioxygenase in natural and nonnatural carotenoids. . Appl Environ Microbiol 79:, 3336–3345. [CrossRef][PubMed]
    [Google Scholar]
  14. Hu Z., Lin B. K., Xu Y., Zhong M. Q., Liu G. M.. ( 2009;). Production and purification of agarase from a marine agarolytic bacterium Agarivorans sp. HZ105. . J Appl Microbiol 106:, 181–190. [CrossRef][PubMed]
    [Google Scholar]
  15. Huang L., Zhou J., Li X., Peng Q., Lu H., Du Y.. ( 2013;). Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. . J Ind Microbiol Biotechnol 40:, 113–122. [CrossRef][PubMed]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  17. Kim S. H., Lee P. C.. ( 2012;). Functional expression and extension of staphylococcal staphyloxanthin biosynthetic pathway in Escherichia coli. . J Biol Chem 287:, 21575–21583. [CrossRef][PubMed]
    [Google Scholar]
  18. Kim S. H., Park Y. H., Schmidt-Dannert C., Lee P. C.. ( 2010;). Redesign, reconstruction, and directed extension of the Brevibacterium linens C40 carotenoid pathway in Escherichia coli. . Appl Environ Microbiol 76:, 5199–5206. [CrossRef][PubMed]
    [Google Scholar]
  19. Kim N. J., Li H., Jung K., Chang H. N., Lee P. C.. ( 2011;). Ethanol production from marine algal hydrolysates using Escherichia coli KO11. . Bioresour Technol 102:, 7466–7469. [CrossRef][PubMed]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  21. Kong M. K., Lee P. C.. ( 2011;). Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. . Biotechnol Bioeng 108:, 1997–2002. [CrossRef][PubMed]
    [Google Scholar]
  22. Kuo I., Saw J., Kapan D. D., Christensen S., Kaneshiro K. Y., Donachie S. P.. ( 2013;). Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai’i, and emended description of the genus Flavobacterium. . Int J Syst Evol Microbiol 63:, 3280–3286. [CrossRef][PubMed]
    [Google Scholar]
  23. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19:, 1–67. [CrossRef]
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). clustal w and clustal_x version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  25. Lewin R. A., Lounsbery D. M.. ( 1969;). Isolation, cultivation and characterization of flexibacteria. . J Gen Microbiol 58:, 145–170. [CrossRef][PubMed]
    [Google Scholar]
  26. Macián M. C., Ludwig W., Schleifer K. H., Pujalte M. J., Garay E.. ( 2001;). Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. . Int J Syst Evol Microbiol 51:, 2031–2036. [CrossRef][PubMed]
    [Google Scholar]
  27. McCammon S. A., Bowman J. P.. ( 2000;). Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov.. Int J Syst Evol Microbiol 50:, 1055–1063. [CrossRef][PubMed]
    [Google Scholar]
  28. McInnes J. L., Forster A. C., Skingle D. C., Symons R. H.. ( 1990;). Preparation and uses of photobiotin. . Methods Enzymol 184:, 588–600. [CrossRef][PubMed]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  30. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. . Int J Syst Bacteriol 27:, 104–117. [CrossRef]
    [Google Scholar]
  31. Miyashita M., Fujimura S., Nakagawa Y., Nishizawa M., Tomizuka N., Nakagawa T., Nakagawa J.. ( 2010;). Flavobacterium algicola sp. nov., isolated from marine algae. . Int J Syst Evol Microbiol 60:, 344–348. [CrossRef][PubMed]
    [Google Scholar]
  32. Reichenbach H., Kochl W., Böttger-Vetter A., Achenbach H.. ( 1980;). Flexirubin-type pigments in Flavobacterium. . Arch Microbiol 126:, 291–293. [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  34. Sheu S. Y., Lin Y. S., Chen W. M.. ( 2013;). Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile. . Int J Syst Evol Microbiol 63:, 2239–2247. [CrossRef][PubMed]
    [Google Scholar]
  35. Smibert R. M., Krieg N. R.. ( 1981;). General characterization. . In Manual of Methods for General Microbiology, pp. 409–443. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  36. Song G. H., Kim S. H., Choi B. H., Han S. J., Lee P. C.. ( 2013;). Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli. . Appl Environ Microbiol 79:, 610–618. [CrossRef][PubMed]
    [Google Scholar]
  37. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  38. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  39. Touchon M., Barbier P., Bernardet J. F., Loux V., Vacherie B., Barbe V., Rocha E. P. C., Duchaud E.. ( 2011;). Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. . Appl Environ Microbiol 77:, 7656–7662. [CrossRef][PubMed]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  41. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  42. Yi H., Oh H. M., Lee J. H., Kim S. J., Chun J. S.. ( 2005;). Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. . Int J Syst Evol Microbiol 55:, 637–641. [CrossRef][PubMed]
    [Google Scholar]
  43. Yokota A., Tamura T., Hasegawa T., Huang L. H.. ( 1993;). Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. . Int J Syst Bacteriol 43:, 805–812. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059618-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059618-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error