1887

Abstract

A Gram-positive staining, rod-shaped, non-motile, spore-forming obligately anaerobic bacterium, designated CRIB, was isolated from the gastro-intestinal tract of a rat and characterized. The major cellular fatty acids of strain CRIB were saturated and unsaturated straight-chain C–C fatty acids, with C being the predominant fatty acid. The polar lipid profile comprised six glycolipids, four phospholipids and one lipid that did not stain with any of the specific spray reagents used. The only quinone was MK-6. The predominating cell-wall sugars were glucose and galactose. The peptidoglycan type of strain CRIB was A1σ lanthionine-direct. The genomic DNA G+C content of strain CRIB was 28.1 mol%. On the basis of 16S rRNA gene sequence similarity, strain CRIB was most closely related to a number of species of the genus , including (97.2 %), (96.2 %), (96.2 %), (96.0 %) and (95.5 %). All these species show very low 16S rRNA gene sequence similarity (<85 %) to the type strain of , the type species of the genus . DNA–DNA hybridization with closely related reference strains indicated reassociation values below 32 %. On the basis of phenotypic and genetic studies, a novel genus, gen. nov., is proposed. The novel isolate CRIB ( = DSM 25109 = NIZO 4048) is proposed as the type strain of the type species, gen. nov., sp. nov., of the proposed novel genus. It is proposed that is transferred to this genus as comb. nov. Furthermore, the reclassification into novel genera is proposed for , as gen. nov., comb. nov. (type species of the genus), , as gen. nov., comb. nov. (type species of the genus), , as gen. nov., comb. nov., and , as gen. nov., comb. nov. (type species of the genus), on the basis of additional data collected in this study. In addition, an emendation of the species and the order is provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059543-0
2014-05-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1600.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059543-0&mimeType=html&fmt=ahah

References

  1. Adachi K., Katsuta A., Matsuda S., Peng X., Misawa N., Shizuri Y., Kroppenstedt R. M., Yokota A., Kasai H.. ( 2007;). Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. . Int J Syst Evol Microbiol 57:, 297–301. [CrossRef][PubMed]
    [Google Scholar]
  2. Biebl H., Spröer C.. ( 2002;). Taxonomy of the glycerol fermenting clostridia and description of Clostridium diolis sp. nov.. Syst Appl Microbiol 25:, 491–497. [CrossRef][PubMed]
    [Google Scholar]
  3. Borkenhagen L. F., Kennedy E. P., Fielding L.. ( 1961;). Enzymatic formation and decarboxylation of phosphatidylserine. . J Biol Chem 236:, PC28–PC30.
    [Google Scholar]
  4. Brown W. L., Ordal Z. J., Halvorson H. O.. ( 1957;). Production and cleaning of spores of putrefactive anaerobe 3679. . Appl Microbiol 5:, 156–159.[PubMed]
    [Google Scholar]
  5. Buchanan R. E.. ( 1917;). Studies on the nomenclature and classification of the Bacteria: III. The families of the Eubacteriales. . J Bacteriol 2:, 347–350.[PubMed]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81:, 461–466. [CrossRef][PubMed]
    [Google Scholar]
  7. Chamkha M., Labat M., Patel B. K., Garcia J. L.. ( 2001;). Isolation of a cinnamic acid-metabolizing Clostridium glycolicum strain from oil mill wastewaters and emendation of the species description. . Int J Syst Evol Microbiol 51:, 2049–2054. [CrossRef][PubMed]
    [Google Scholar]
  8. Choukévitch J.. ( 1911;). Étude de la flore bactérienne du gros intestin du cheval. . Ann Inst Pasteur (Paris) 25:, 345–368.
    [Google Scholar]
  9. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A.. ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44:, 812–826. [CrossRef][PubMed]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  11. De Vos P., Truper H.. ( 2000;). Judicial Commission of the International Committee on Systematic Bacteriology; IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. . Int J Syst Evol Microbiol 50:, 2239–2244. [CrossRef]
    [Google Scholar]
  12. Drucker D. B., Wardle H. M., Boote V.. ( 1996;). Phospholipid profiles of Clostridium difficile. . J Bacteriol 178:, 5844–5846.[PubMed]
    [Google Scholar]
  13. Duncan C. L., Strong D. H.. ( 1968;). Improved medium for sporulation of Clostridium perfringens. . Appl Microbiol 16:, 82–89.[PubMed]
    [Google Scholar]
  14. Ezaki T.. ( 2009;). Genus I. Peptostreptococcus. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, The Firmicutes, pp. 1008–1009. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  15. Ezaki T.. ( 2010;). Peptostreptococcaceae fam. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List no. 132. . Int J Syst Bacteriol 60:, 469–472. [CrossRef]
    [Google Scholar]
  16. Ezaki T., Yamamoto N., Ninomiya K., Suzuki S., Yabuuchi E.. ( 1983;). Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov.. Int J Syst Bacteriol 33:, 683–698. [CrossRef]
    [Google Scholar]
  17. Feulgen R., Voit K.. ( 1924;). Über einen weitverbreiteten festen aldehyd. . Pflugers Arch Gesamte Physiol Menschen Tiere 206:, 389–410 (in German). [CrossRef]
    [Google Scholar]
  18. Frosolono M. F., Rapport M. M.. ( 1969;). Reactivity of plasmalogens: kinetics of acid-catalyzed hydrolysis. . J Lipid Res 10:, 504–506.[PubMed]
    [Google Scholar]
  19. Gaston L. W., Stadtman E. R.. ( 1963;). Fermentation of ethylene glycol by Clostridium glycolicum, sp. n.. J Bacteriol 85:, 356–362.[PubMed]
    [Google Scholar]
  20. Gerritsen J., Smidt H., Rijkers G. T., de Vos W. M.. ( 2011a;). Intestinal microbiota in human health and disease: the impact of probiotics. . Genes Nutr 6:, 209–240. [CrossRef][PubMed]
    [Google Scholar]
  21. Gerritsen J., Timmerman H. M., Fuentes S., van Minnen L. P., Panneman H., Konstantinov S. R., Rombouts F. M., Gooszen H. G., Akkermans L. M.. & other authors ( 2011b;). Correlation between protection against sepsis by probiotic therapy and stimulation of a novel bacterial phylotype. . Appl Environ Microbiol 77:, 7749–7756. [CrossRef][PubMed]
    [Google Scholar]
  22. Goldfine H., Johnston N. C.. ( 2005;). Membrane lipids of Clostridia. . In Handbook on Clostridia, pp. 297–309. Edited by Dürre P... Boca Raton, Florida:: CRC Press;. [CrossRef]
    [Google Scholar]
  23. Gottschalk G., Andreesen J. R., Hippe H.. ( 1981;). The genus Clostridium (nonmedical aspects). . In The Prokaryotes, , 1st edn., vol. 2, pp. 1767–1803. Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G... New York:: Springer;.
    [Google Scholar]
  24. Guan Z., Johnston N. C., Aygun-Sunar S., Daldal F., Raetz C. R., Goldfine H.. ( 2011;). Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. . Biochim Biophys Acta 1811:, 186–193. [CrossRef][PubMed]
    [Google Scholar]
  25. Guan Z., Johnston N. C., Raetz C. R., Johnson E. A., Goldfine H.. ( 2012;). Lipid diversity among botulinum neurotoxin-producing clostridia. . Microbiology 158:, 2577–2584. [CrossRef][PubMed]
    [Google Scholar]
  26. Guan Z., Tian B., Perfumo A., Goldfine H.. ( 2013;). The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile. . Biochim Biophys Acta 1831:, 1108–1112. [CrossRef][PubMed]
    [Google Scholar]
  27. Holdeman L. V., Cato E. P., Moore W. E. C.. (editors) ( 1977;). Anaerobe Laboratory Manual, , 4th edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  28. Huss V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  29. Johnson J. L., Francis B. S.. ( 1975;). Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species. . J Gen Microbiol 88:, 229–244. [CrossRef][PubMed]
    [Google Scholar]
  30. Johnston N. C., Goldfine H.. ( 1983;). Lipid composition in the classification of the butyric acid-producing clostridia. . J Gen Microbiol 129:, 1075–1081.[PubMed]
    [Google Scholar]
  31. Johnston N. C., Baker J. K., Goldfine H.. ( 2004;). Phospholipids of Clostridium perfringens: a reexamination. . FEMS Microbiol Lett 233:, 65–68. [CrossRef][PubMed]
    [Google Scholar]
  32. Johnston N. C., Aygun-Sunar S., Guan Z., Ribeiro A. A., Daldal F., Raetz C. R., Goldfine H.. ( 2010;). A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. . J Lipid Res 51:, 1953–1961. [CrossRef][PubMed]
    [Google Scholar]
  33. Kämpfer P., Buczolits S., Albrecht A., Busse H. J., Stackebrandt E.. ( 2003;). Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov.. Int J Syst Evol Microbiol 53:, 893–896. [CrossRef][PubMed]
    [Google Scholar]
  34. Kane M. D., Brauman A., Breznak J. A.. ( 1991;). Clostridium mayombei sp. nov., an H2/CO2 acetogenic bacterium from the gut of the African soil-feeding termite, Cubitermes speciosus. . Arch Microbiol 156:, 99–104. [CrossRef]
    [Google Scholar]
  35. Kane M. D., Brauman A., Breznak J. A.. ( 1992;). Clostridium mayombei sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 40. . Int J Syst Bacteriol 42:, 191–192. [CrossRef][PubMed]
    [Google Scholar]
  36. Kanfer J., Kennedy E. P.. ( 1964;). Metabolism and function of bacterial lipids: II. Biosynthesis of phospholipids in Escherichia coli. . J Biol Chem 239:, 1720–1726.[PubMed]
    [Google Scholar]
  37. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  38. Kluyver A. J., van Niel C. B.. ( 1936;). Prospects for a natural system of classification of bacteria. . Zentralbl Bakterol Parasitenkd Infectinskr Hyg Abt II 94:, 369–403.
    [Google Scholar]
  39. Korachi M., Rupnik M., Blinkhorn A. S., Boote V., Drucker D. B.. ( 2002;). Comparison of polar lipid profiles of Clostridium difficile isolates from different geographical locations. . Anaerobe 8:, 35–39. [CrossRef]
    [Google Scholar]
  40. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E.. ( 1988;). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. . Int J Syst Bacteriol 38:, 358–361. [CrossRef]
    [Google Scholar]
  41. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... New York:: Wiley;.
    [Google Scholar]
  42. Lapage S. P., Sneath P. H. A., Lessel E. F., Skerman V. B. D., Seeliger H. P. R., Clark W. A.. (editors) ( 1992;). International Code of Nomenclature of Bacteria, and Statutes of the International Committee on Systematic Bacteriology, and Statutes of the Bacteriology and Applied Microbiology Section of the International Union of Microbiological Societies. Bacteriological code, 1990 revision. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  43. Leifson E.. ( 1960;). Atlas of bacterial flagellation. New York:: Academic Press Inc;.
    [Google Scholar]
  44. Ley R. E., Lozupone C. A., Hamady M., Knight R., Gordon J. I.. ( 2008;). Worlds within worlds: evolution of the vertebrate gut microbiota. . Nat Rev Microbiol 6:, 776–788. [CrossRef][PubMed]
    [Google Scholar]
  45. Ludwig W., Schleifer K.-H., Whitman W. B.. ( 2010;). Eubacteriaceae fam. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 132. . Int J Syst Evol Microbiol, 469–472.
    [Google Scholar]
  46. MacKenzie S. L.. ( 1987;). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. . J Assoc Off Anal Chem 70:, 151–160.[PubMed]
    [Google Scholar]
  47. McClung L. S., McCoy E.. ( 1957;). Genus II Clostridium Prazmowski 1880. . In Bergey’s Manual of Determinative Bacteriology, , 7th edn., pp. 634–693. Edited by Breed R. S., Murray E. G. D., Smith N. R... Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  48. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H. P.. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy. ? Arch Microbiol 195:, 413–418. [CrossRef][PubMed]
    [Google Scholar]
  49. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurements of the G+C content of deoxyribonucleic acid by high-pressure liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  50. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. . J Clin Microbiol 16:, 584–586.[PubMed]
    [Google Scholar]
  51. Mollenhauer H. H.. ( 1964;). Plastic embedding mixtures for use in electron microscopy. . Stain Technol 39:, 111–114.[PubMed]
    [Google Scholar]
  52. Morrison W. R., Smith L. M.. ( 1964;). Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride – methanol. . J Lipid Res 5:, 600–608.[PubMed]
    [Google Scholar]
  53. Natvig H.. ( 1905;). Bakteriologische verhältnisse in weiblichen genitalsekreten. . Arch Gynakol 76:, 701–859. [CrossRef]
    [Google Scholar]
  54. Oulevey J., Bahl H., Thiele O. W.. ( 1986;). Novel alkyl-1-enyl ether lipids isolated from Clostridium acetobutylicum. . Arch Microbiol 144:, 166–168. [CrossRef]
    [Google Scholar]
  55. Prazmowski A.. ( 1880;). Untersuchungen über die entwicklungsgeschichte und fermentwirkung einiger bacterien-arten. Inaug. Diss. Hugo Voigt, Leipzig, pp. 1–58.
    [Google Scholar]
  56. Prévot A. R.. ( 1938a;). Études de systématique bactérienne. III. Invalidité du genre Bacteroides Castellani et Chalmers démembrement et reclassification. . Ann Inst Pasteur (Paris) 60:, 285–307.
    [Google Scholar]
  57. Prévot A. R.. ( 1938b;). Études de systématique bactérienne. IV Critique de la conception actuelle du genre Clostridium. . Ann Inst Pasteur (Paris) 61:, 72–91.
    [Google Scholar]
  58. Prévot A. R.. ( 1948;). Étude des bactéries anaérobies d'Afrique occidentale française (Sénégal, Guinée, Côte d'Ivoire). . Ann Inst Pasteur (Paris) 74:, 157–170.
    [Google Scholar]
  59. Prévot A. R.. ( 1953;). Dictionnaire des Bactéries Pathogènes, , 2nd edn.. Paris:: Masson;.
    [Google Scholar]
  60. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  61. Rainey F. A.. ( 2009;). Order I. Clostridiales. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, The Firmicutes, p. 736. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
  62. Rainey F. A., Hollen B. J., Small A.. ( 2009;). Genus 1. Clostridium. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, The Firmicutes, pp. 738–828. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
  63. Reynolds E. S.. ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. . J Cell Biol 17:, 208–212. [CrossRef][PubMed]
    [Google Scholar]
  64. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. ( 1955;). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  65. Sacks L. E., Thompson P. A.. ( 1977;). Increased spore yields of Clostridium perfringens in the presence of methylxanthines. . Appl Environ Microbiol 34:, 189–193.[PubMed]
    [Google Scholar]
  66. Schleifer K.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol, 18:, 123–156. [CrossRef]
    [Google Scholar]
  67. Skerman V. B. D., McGowan V., Sneath P. H. A.. ( 1980;). Approved Lists of Bacterial Names. . Int J Syst Bacteriol 30:, 225–420. [CrossRef]
    [Google Scholar]
  68. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  69. Song Y. L., Liu C. X., McTeague M., Summanen P., Finegold S. M.. ( 2004;). Clostridium bartlettii sp. nov., isolated from human faeces. . Anaerobe 10:, 179–184. [CrossRef][PubMed]
    [Google Scholar]
  70. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbial Today 33:, 152–155.
    [Google Scholar]
  71. Stackebrandt E., Kramer I., Swiderski J., Hippe H.. ( 1999;). Phylogenetic basis for a taxonomic dissection of the genus Clostridium. . FEMS Immunol Med Microbiol 24:, 253–258. [CrossRef][PubMed]
    [Google Scholar]
  72. Stams A. J., Van Dijk J. B., Dijkema C., Plugge C. M.. ( 1993;). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. . Appl Environ Microbiol 59:, 1114–1119.[PubMed]
    [Google Scholar]
  73. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. . Appl Microbiol 28:, 226–231.[PubMed]
    [Google Scholar]
  74. Suzuki M. T., Taylor L. T., DeLong E. F.. ( 2000;). Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. . Appl Environ Microbiol 66:, 4605–4614. [CrossRef][PubMed]
    [Google Scholar]
  75. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  76. Thiele O. W., Oulevey J., Bahl H.. ( 1985;). Neuartige alkenylether-lipide aus anaeroben bakterien. . Fette, Seifen, Anstrichmittel 87:, 551–556. [CrossRef]
    [Google Scholar]
  77. Tian B., Guan Z., Goldfine H.. ( 2013;). An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. . Biochim Biophys Acta 1831:, 1185–1190. [CrossRef][PubMed]
    [Google Scholar]
  78. Tindall B. J.. ( 1990a;). A comparative study of the lipid-composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  79. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  80. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  81. van Niftrik L., Geerts W. J., van Donselaar E. G., Humbel B. M., Yakushevska A., Verkleij A. J., Jetten M. S., Strous M.. ( 2008;). Combined structural and chemical analysis of the anammoxosome: a membrane-bounded intracytoplasmic compartment in anammox bacteria. . J Struct Biol 161:, 401–410. [CrossRef][PubMed]
    [Google Scholar]
  82. Walther P., Ziegler A.. ( 2002;). Freeze substitution of high-pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water. . J Microsc 208:, 3–10. [CrossRef][PubMed]
    [Google Scholar]
  83. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  84. Whitehead T. R., Cotta M. A., Falsen E., Moore E., Lawson P. A.. ( 2011;). Peptostreptococcus russellii sp. nov., isolated from a swine-manure storage pit. . Int J Syst Evol Microbiol 61:, 1875–1879. [CrossRef][PubMed]
    [Google Scholar]
  85. Whiton R. S., Lau P., Morgan S. L., Gilbart J., Fox A.. ( 1985;). Modifications in the alditol acetate method for analysis of muramic acid and other neutral and amino sugars by capillary gas chromatography-mass spectrometry with selected ion monitoring. . J Chromatogr A 347:, 109–120. [CrossRef][PubMed]
    [Google Scholar]
  86. Wiegel J.. ( 2009;). Family I. Clostridiaceae Pribham 1933, 90AL. . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol 3, The Firmicutes, pp. 736–738. Edited by De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K.-H., Whitman W. B... New York:: Springer;.
    [Google Scholar]
  87. Wiegel J., Tanner R., Rainey F. A.. ( 2006;). An introduction to the family Clostridiaceae. . In The prokaryotes: a handbook on the biology of bacteria; Bacteria: Firmicutes, Cyanobacteria, , 3rd edn., vol. 4, pp. 654–678. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K., Stackebrandt E... New York:: Springer;.
    [Google Scholar]
  88. Willems A., Collins M. D.. ( 1994;). Phylogenetic placement of Sarcina ventriculi and Sarcina maxima within group I Clostridium, a possible problem for future revision of the genus Clostridium. Request for an opinion. . Int J Syst Bacteriol 44:, 591–593. [CrossRef][PubMed]
    [Google Scholar]
  89. Yutin N., Galperin M. Y.. ( 2013;). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15:, 2631–2641.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059543-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059543-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error