1887

Abstract

A halophilic, Gram-staining-positive, non-motile, endospore forming rod-shaped bacterial strain, S1LM8, was isolated from a sediment sample collected from an inland solar saltern located in La Malahá, Granada (Spain). Growth was observed in media containing 7.5–30 % total salts (optimum 15 % total salts), at pH 7–10 (optimum pH 8) and at 15–50 °C (optimum 35–38 °C). The predominant isoprenoid quinone was MK-7. It contained A1γ-type peptidoglycan with -diaminopimelic acid as the diagnostic diamino acid. The major cellular fatty acids were anteiso-C, iso-C, anteiso-C and iso-C. The G+C content of its genomic DNA was 38.2 mol%. The affiliation of strain S1LM8 with the species of the genus was determined by 16S rRNA gene sequence comparison. The most closely related species were YIM 012 with 99.8 % similarity, BH163 with 99.8 % similarity and ISL-17 with 98.1 % similarity between their 16S rRNA gene sequences. However, DNA–DNA relatedness between the novel isolate and the related species of the genus was less than 34 %. Based on the phylogenetic, phenotypic and chemotaxonomic features, a novel species, sp. nov. is proposed. The type strain is S1LM8 ( = CECT 8373 = DSM 27545).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.059121-0
2014-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2066.html?itemId=/content/journal/ijsem/10.1099/ijs.0.059121-0&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Ventosa A.. ( 2002;). Moderately halophilic and halotolerant species of Bacillus and related genera. . In Applications and Systematics of Bacillus and Relatives, pp. 83–99. Edited by Berkeley R. C. W., Heyndrickx M., Logan N., de Vos P... Oxford:: Blackwell;. [CrossRef]
    [Google Scholar]
  2. Berd D.. ( 1973;). Laboratory identification of clinically important aerobic actinomycetes. . Appl Microbiol 25:, 665–681.[PubMed]
    [Google Scholar]
  3. Dussault H. P.. ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  4. Ferragut C., Leclerc H.. ( 1976;). Etude comparative des méthodes de détermination du Tm de l'ADN bactérien. . Ann Microbiol 127:, 223–235.
    [Google Scholar]
  5. Fritze D.. ( 1996;). Bacillus haloalkaliphilus sp. nov.. Int J Syst Bacteriol 46:, 98–101. [CrossRef]
    [Google Scholar]
  6. Hartmann R., Sickinger H. D., Oesterhelt D.. ( 1980;). Anaerobic growth of halobacteria. . Proc Natl Acad Sci U S A 77:, 3821–3825. [CrossRef][PubMed]
    [Google Scholar]
  7. Jeon C. O., Lim J. M., Lee J. M., Xu L. H., Jiang C. L., Kim C. J.. ( 2005;). Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. . Int J Syst Evol Microbiol 55:, 1891–1896. [CrossRef][PubMed]
    [Google Scholar]
  8. Kharroub K., Aguilera M., Quesada T., Morillo J. A., Ramos-Cormenzana A., Boulharouf A., Monteoliva-Sánchez M.. ( 2006;). Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria. . Int J Syst Evol Microbiol 56:, 2647–2652. [CrossRef][PubMed]
    [Google Scholar]
  9. Kharroub K., Lizama C., Aguilera M., Boulahrouf A., Campos V., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2008;). Halomicrobium katesii sp. nov., an extremely halophilic archaeon. . Int J Syst Evol Microbiol 58:, 2354–2358. [CrossRef][PubMed]
    [Google Scholar]
  10. Kharroub K., Aguilera M., Jiménez-Pranteda M. L., González-Paredes A., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2011;). Marinobacter oulmenensis sp. nov., a moderately halophilic bacterium isolated from brine of a salt concentrator. . Int J Syst Evol Microbiol 61:, 2210–2214. [CrossRef][PubMed]
    [Google Scholar]
  11. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  12. Lind E., Ursing J.. ( 1986;). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA–DNA-hybridization. . Acta Pathol Microbiol Immunol Scand [B] 94:, 205–213.[PubMed]
    [Google Scholar]
  13. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  14. Marmur J.. ( 1963;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . Methods Enzymol 6:, 726–738. [CrossRef]
    [Google Scholar]
  15. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  16. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V.. ( 2002;). A detailed phenotypic characterisation of the type strains of Halomonas species. . Syst Appl Microbiol 25:, 360–375. [CrossRef][PubMed]
    [Google Scholar]
  17. Owen R. J., Hill L. R.. ( 1979;). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, (Society for Applied Bacteriology Technical Series no. 14), , 2nd edn., pp. 277–296. Edited by Skinner F. A., Lovelock D. W... London:: Academic Press;.
    [Google Scholar]
  18. Prado B., Del Moral A., Quesada E., Rios R., Monteoliva-Sánchez M., Campos V., Ramos-Cormenzana A.. ( 1991;). Numerical taxonomy of moderately halophilic Gram-negative rods isolated from the Salar-de-Atacama, Chile. . Syst Appl Microbiol 14:, 275–281. [CrossRef]
    [Google Scholar]
  19. Prado B., Lizama C., Aguilera M., Ramos-Cormenzana A., Fuentes S., Campos V., Monteoliva-Sánchez M.. ( 2006;). Chromohalobacter nigrandesensis sp. nov., a moderately halophilic, Gram-negative bacterium isolated from Lake Tebenquiche on the Atacama Saltern, Chile. . Int J Syst Evol Microbiol 56:, 647–651. [CrossRef][PubMed]
    [Google Scholar]
  20. Quesada E., Ventosa A., Rodríguez-Valera F., Megías L., Ramos-Cormenzana A.. ( 1983;). Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. . J Gen Microbiol 129:, 2649–2657.
    [Google Scholar]
  21. Romano I., Lama L., Nicolaus B., Gambacorta A., Giordano A.. ( 2005;). Alkalibacillus filiformis sp. nov., isolated from a mineral pool in Campania, Italy. . Int J Syst Evol Microbiol 55:, 2395–2399. [CrossRef][PubMed]
    [Google Scholar]
  22. Rothschild L. J., Mancinelli R. L.. ( 2001;). Life in extreme environments. . Nature 409:, 1092–1101. [CrossRef][PubMed]
    [Google Scholar]
  23. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A.. ( 1988;). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. . Science 239:, 487–491. [CrossRef][PubMed]
    [Google Scholar]
  24. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. . Newark, DE:: MIDI Inc;.
  25. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  26. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  27. Schumann P.. ( 2011;). Peptidoglycan structure. . Methods Microbiol 38:, 101–129. [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Subov N. N.. ( 1931;). Oceanographical Tables. Moscow:: USSR Oceanographic Institute Hydrometeorological Commission;.
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  32. Tian X. P., Dastager S. G., Lee J. C., Tang S. K., Zhang Y. Q., Park D. J., Kim C. J., Li W. J.. ( 2007;). Alkalibacillus halophilus sp. nov., a new halophilic species isolated from hypersaline soil in Xin-Jiang province, China. . Syst Appl Microbiol 30:, 268–272. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. ( 1990a;). A comparative-study of the lipids composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  34. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  35. Usami R., Echigo A., Fukushima T., Mizuki T., Yoshida Y., Kamekura M.. ( 2007;). Alkalibacillus silvisoli sp. nov., an alkaliphilic moderate halophile isolated from non-saline forest soil in Japan. . Int J Syst Evol Microbiol 57:, 770–774. [CrossRef][PubMed]
    [Google Scholar]
  36. Ventosa A., Quesada E., Rodriguez-Valera R., Ruiz-Berraquero F., Ramos-Cormenzana A.. ( 1982;). Numerical taxonomy of moderately Gram negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  37. Yoon J. H., Kang S. J., Jung Y. T., Lee M. H., Oh T. K.. ( 2010;). Alkalibacillus flavidus sp. nov., isolated from a marine solar saltern. . Int J Syst Evol Microbiol 60:, 434–438. [CrossRef][PubMed]
    [Google Scholar]
  38. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. ( 1998;). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.059121-0
Loading
/content/journal/ijsem/10.1099/ijs.0.059121-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error