1887

Abstract

A novel bacterium, PB3-7B, was isolated on phenol-supplemented inorganic growth medium from a laboratory-scale wastewater purification system that treated coke plant effluent. 16S rRNA gene sequence analysis revealed that strain PB3-7B belonged to the family and showed the highest pairwise sequence similarity to Ch07 (97.5 %), BZ59 (97.3 %) and BN9 (97.2 %). Strain PB3-7B was rod-shaped, motile and oxidase- and catalase-positive. The predominant fatty acids were C, C cyclo, C cyclo ω8 and C 3-OH, and the major respiratory quinone was Q-8. The G+C content of the genomic DNA of strain PB3-7B was 59.7 mol%. The novel bacterium can be distinguished from closely related type strains based on its urease activity and the capacity for assimilation of glycerol and amygdalin. On the basis of the phenotypic, chemotaxonomic and molecular data, strain PB3-7B is considered to represent a new genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is PB3-7B ( = DSM 25520 = NCAIM B 02512).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058875-0
2014-06-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/1920.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058875-0&mimeType=html&fmt=ahah

References

  1. Auling G., Probst A., Kroppenstedt R. M.. ( 1986;). Chemo- and molecular taxonomy of d(−)-tartrate-utilizing pseudomonads. . Syst Appl Microbiol 8:, 114–120. [CrossRef]
    [Google Scholar]
  2. Blümel S., Mark B., Busse H.-J., Kämpfer P., Stolz A.. ( 2001;). Pigmentiphaga kullae gen. nov., sp. nov., a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. . Int J Syst Evol Microbiol 51:, 1867–1871. [CrossRef][PubMed]
    [Google Scholar]
  3. Busse H.-J., Stolz A.. ( 2006;). Achromobacter, Alcaligenes and related genera. . In The Prokaryotes, , 3rd edn., vol. 5, pp. 675–700. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  4. Claus D.. ( 1992;). A standardized Gram staining procedure. . World J Microbiol Biotechnol 8:, 451–452. [CrossRef][PubMed]
    [Google Scholar]
  5. Clermont D., Harmant C., Bizet C.. ( 2001;). Identification of strains of Alcaligenes and Agrobacterium by a polyphasic approach. . J Clin Microbiol 39:, 3104–3109. [CrossRef][PubMed]
    [Google Scholar]
  6. Cowan S. T., Steel K. J.. ( 1974;). Manual for the Identification of Medical Bacteria, , 2nd edn.. Cambridge:: Cambridge University Press;.
    [Google Scholar]
  7. Euzéby J. P.. ( 1997;). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. . Int J Syst Bacteriol 47:, 590–592. [CrossRef][PubMed]
    [Google Scholar]
  8. Felföldi T., Székely A. J., Gorál R., Barkács K., Scheirich G., András J., Rácz A., Márialigeti K.. ( 2010;). Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent. . Bioresour Technol 101:, 3406–3414. [CrossRef][PubMed]
    [Google Scholar]
  9. Felföldi T., Kéki Z., Sipos R., Márialigeti K., Tindall B. J., Schumann P., Tóth E. M.. ( 2011;). Ottowia pentelensis sp. nov., a floc-forming betaproteobacterium isolated from an activated sludge system treating coke plant effluent. . Int J Syst Evol Microbiol 61:, 2146–2150. [CrossRef][PubMed]
    [Google Scholar]
  10. Felföldi T., Vengring A., Márialigeti K., András J., Schumann P., Tóth E. M.. ( 2014;). Hephaestia caeni gen. nov., sp. nov., a new member of the family Sphingomonadaceae isolated from activated sludge. . Int J Syst Evol Microbiol 64:, 738–744. [CrossRef][PubMed]
    [Google Scholar]
  11. Geng A., Soh A. E., Lim C. J., Loke L. C.. ( 2006;). Isolation and characterization of a phenol-degrading bacterium from an industrial activated sludge. . Appl Microbiol Biotechnol 71:, 728–735. [CrossRef][PubMed]
    [Google Scholar]
  12. Heimbrook M. E., Wang W. L. L., Campbell G.. ( 1989;). Staining bacterial flagella easily. . J Clin Microbiol 27:, 2612–2615.[PubMed]
    [Google Scholar]
  13. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  14. Kim Y.-J., Kim M. K., Im W.-T., Srinivasan S., Yang D.-C.. ( 2010;). Parapusillimonas granuli gen. nov., sp. nov., isolated from granules from a wastewater-treatment bioreactor. . Int J Syst Evol Microbiol 60:, 1401–1406. [CrossRef][PubMed]
    [Google Scholar]
  15. Kim S.-J., Yoo S.-H., Weon H.-Y., Kim Y.-S., Anandham R., Suh J.-S., Kwon S.-W.. ( 2011;). Paralcaligenes ureilyticus gen. nov., sp. nov. isolated from soil of a Korean ginseng field. . J Microbiol 49:, 502–507. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M., Oh H.-S., Park S.-C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. . Int J Syst Evol Microbiol 64:, 346–351. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee M., Woo S.-G., Chae M., Ten L. N.. ( 2010;). Pusillimonas soli sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 60:, 2326–2330. [CrossRef][PubMed]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  20. Park M. S., Park Y.-J., Jung J. Y., Lee S. H., Park W., Lee K., Jeon C. O.. ( 2011;). Pusillimonas harenae sp. nov., isolated from a sandy beach, and emended description of the genus Pusillimonas. . Int J Syst Evol Microbiol 61:, 2901–2906. [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). sina: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. . Bioinformatics 28:, 1823–1829. [CrossRef][PubMed]
    [Google Scholar]
  22. Schumann P., Pukall R.. ( 2013;). The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. . Syst Appl Microbiol 36:, 369–375. [CrossRef][PubMed]
    [Google Scholar]
  23. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  24. Srinivasan S., Kim M. K., Sathiyaraj G., Kim Y.-J., Yang D.-C.. ( 2010;). Pusillimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 1783–1787. [CrossRef][PubMed]
    [Google Scholar]
  25. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  26. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H.-J.. ( 2005;). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. . Int J Syst Evol Microbiol 55:, 1077–1081. [CrossRef][PubMed]
    [Google Scholar]
  27. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  28. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  29. Tarrand J. J., Gröschel D. H. M.. ( 1982;). Rapid, modified oxidase test for oxidase-variable bacterial isolates. . J Clin Microbiol 16:, 772–774.[PubMed]
    [Google Scholar]
  30. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  31. Tóth E. M., Schumann P., Borsodi A. K., Kéki Z., Kovács A. L., Márialigeti K.. ( 2008;). Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new gammaproteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). . Int J Syst Evol Microbiol 58:, 976–981. [CrossRef][PubMed]
    [Google Scholar]
  32. Vaz-Moreira I., Figueira V., Lopes A. R., De Brandt E., Vandamme P., Nunes O. C., Manaia C. M.. ( 2011;). Candidimonas nitroreducens gen. nov., sp. nov. and Candidimonas humi sp. nov., isolated from sewage sludge compost. . Int J Syst Evol Microbiol 61:, 2238–2246. [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang D.-C., Busse H.-J., Wieser C., Liu H.-C., Zhou Y.-G., Schinner F., Margesin R.. ( 2012;). Candidimonas bauzanensis sp. nov., isolated from soil, and emended description of the genus Candidimonas Vaz-Moreira et al. 2011. . Int J Syst Evol Microbiol 62:, 2084–2089. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058875-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058875-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error