sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell Free

Abstract

A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB, was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB represented a distinct lineage within the genus (98.5–99.4 % 16S rRNA gene sequence similarity and 94.0–96.5 % sequence similarity based on the three concatenated housekeeping genes , and . Strain 1GB exhibited DNA–DNA hybridization relatedness of 7–43 % with type strains of all established species of the genus . On the basis of these phenotypic, phylogenetic and genotypic data, the name sp. nov. is proposed for strain 1GB. The type strain is 1GB ( = NBRC 109676 = KCTC 32430).

Funding
This study was supported by the:
  • Japanese Science and Technology Agency (JST
  • Japanese Society for the Promotion of Science (Award 23656324)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058826-0
2014-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1384.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058826-0&mimeType=html&fmt=ahah

References

  1. Brisse S., Verhoef J. ( 2001 ). Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. . Int J Syst Evol Microbiol 51, 915924. [View Article] [PubMed]
    [Google Scholar]
  2. Bullen R. A., Arnot T. C., Lakeman J. B., Walsh F. C. ( 2006 ). Biofuel cells and their development. . Biosens Bioelectron 21, 20152045. [View Article] [PubMed]
    [Google Scholar]
  3. Chung K., Okabe S. ( 2009a ). Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. . Biotechnol Bioeng 104, 901910. [View Article] [PubMed]
    [Google Scholar]
  4. Chung K., Okabe S. ( 2009b ). Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. . Appl Microbiol Biotechnol 83, 965977. [View Article] [PubMed]
    [Google Scholar]
  5. Chung K., Fujiki I., Okabe S. ( 2011 ). Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. . Bioresour Technol 102, 355360. [View Article] [PubMed]
    [Google Scholar]
  6. Davis F., Higson S. P. J. ( 2007 ). Biofuel cells–recent advances and applications. . Biosens Bioelectron 22, 12241235. [View Article] [PubMed]
    [Google Scholar]
  7. Deng L. F., Li F. B., Zhou S. G., Huang D. Y., Ni J. R. ( 2010 ). A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. . Chin Sci Bull 55, 99104. [View Article]
    [Google Scholar]
  8. Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S. ( 2005 ). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. . J Clin Microbiol 43, 41784182. [View Article] [PubMed]
    [Google Scholar]
  9. Drancourt M., Bollet C., Carta A., Rousselier P. ( 2001 ). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov.. Int J Syst Evol Microbiol 51, 925932. [View Article] [PubMed]
    [Google Scholar]
  10. Hall T. A. ( 1999 ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41, 9598.
    [Google Scholar]
  11. Hiraishi A. ( 1988 ). High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. . J Appl Bacteriol 64, 103105.[PubMed]
    [Google Scholar]
  12. Kim B. H., Kim H. J., Hyun M. S., Park D. H. ( 1999 ). Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens . . J Microbiol Biotechnol 9, 127131.
    [Google Scholar]
  13. Kimura M. ( 1980 ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16, 111120. [View Article] [PubMed]
    [Google Scholar]
  14. Kubota M., Kawahara K., Sekiya K., Uchida T., Hattori Y., Futamata H., Hiraishi A. ( 2005 ). Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. . Syst Appl Microbiol 28, 165174. [View Article] [PubMed]
    [Google Scholar]
  15. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  16. Logan B. E., Regan J. M. ( 2006 ). Electricity-producing bacterial communities in microbial fuel cells. . Trends Microbiol 14, 512518. [View Article] [PubMed]
    [Google Scholar]
  17. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3, 208218, IN1. [View Article]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. ( 1989 ). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39, 159167. [View Article]
    [Google Scholar]
  19. Oyaizu-Masuchi Y., Komagata K. ( 1988 ). Isolation of free-living nitrogen-fixing bacteria from the rhizosphere of rice. . J Gen Appl Microbiol 34, 127164. [View Article]
    [Google Scholar]
  20. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  21. Sasser M. ( 1990 ). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Stackebrandt E., Ebers J. ( 2006 ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33, 152155.
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. ( 1994 ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22, 46734680. [View Article] [PubMed]
    [Google Scholar]
  24. Urwin R., Maiden M. C. ( 2003 ). Multi-locus sequence typing: a tool for global epidemiology. . Trends Microbiol 11, 479487. [View Article] [PubMed]
    [Google Scholar]
  25. Whistance G. R., Dillon J. F., Threlfall D. R. ( 1969 ). The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria. . Biochem J 111, 461472.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058826-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058826-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed