1887

Abstract

A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB, was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB represented a distinct lineage within the genus (98.5–99.4 % 16S rRNA gene sequence similarity and 94.0–96.5 % sequence similarity based on the three concatenated housekeeping genes , and . Strain 1GB exhibited DNA–DNA hybridization relatedness of 7–43 % with type strains of all established species of the genus . On the basis of these phenotypic, phylogenetic and genotypic data, the name sp. nov. is proposed for strain 1GB. The type strain is 1GB ( = NBRC 109676 = KCTC 32430).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058826-0
2014-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1384.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058826-0&mimeType=html&fmt=ahah

References

  1. Brisse S., Verhoef J.. ( 2001;). Phylogenetic diversity of Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates revealed by randomly amplified polymorphic DNA, gyrA and parC genes sequencing and automated ribotyping. . Int J Syst Evol Microbiol 51:, 915–924. [CrossRef][PubMed]
    [Google Scholar]
  2. Bullen R. A., Arnot T. C., Lakeman J. B., Walsh F. C.. ( 2006;). Biofuel cells and their development. . Biosens Bioelectron 21:, 2015–2045. [CrossRef][PubMed]
    [Google Scholar]
  3. Chung K., Okabe S.. ( 2009a;). Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell. . Biotechnol Bioeng 104:, 901–910. [CrossRef][PubMed]
    [Google Scholar]
  4. Chung K., Okabe S.. ( 2009b;). Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. . Appl Microbiol Biotechnol 83:, 965–977. [CrossRef][PubMed]
    [Google Scholar]
  5. Chung K., Fujiki I., Okabe S.. ( 2011;). Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell. . Bioresour Technol 102:, 355–360. [CrossRef][PubMed]
    [Google Scholar]
  6. Davis F., Higson S. P. J.. ( 2007;). Biofuel cells–recent advances and applications. . Biosens Bioelectron 22:, 1224–1235. [CrossRef][PubMed]
    [Google Scholar]
  7. Deng L. F., Li F. B., Zhou S. G., Huang D. Y., Ni J. R.. ( 2010;). A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. . Chin Sci Bull 55:, 99–104. [CrossRef]
    [Google Scholar]
  8. Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S.. ( 2005;). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. . J Clin Microbiol 43:, 4178–4182. [CrossRef][PubMed]
    [Google Scholar]
  9. Drancourt M., Bollet C., Carta A., Rousselier P.. ( 2001;). Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov.. Int J Syst Evol Microbiol 51:, 925–932. [CrossRef][PubMed]
    [Google Scholar]
  10. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  11. Hiraishi A.. ( 1988;). High-performance liquid chromatographic analysis of demethylmenaquinone and menaquinone mixtures from bacteria. . J Appl Bacteriol 64:, 103–105.[PubMed]
    [Google Scholar]
  12. Kim B. H., Kim H. J., Hyun M. S., Park D. H.. ( 1999;). Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens. . J Microbiol Biotechnol 9:, 127–131.
    [Google Scholar]
  13. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  14. Kubota M., Kawahara K., Sekiya K., Uchida T., Hattori Y., Futamata H., Hiraishi A.. ( 2005;). Nocardioides aromaticivorans sp. nov., a dibenzofuran-degrading bacterium isolated from dioxin-polluted environments. . Syst Appl Microbiol 28:, 165–174. [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M... Chichester:: Wiley;.
    [Google Scholar]
  16. Logan B. E., Regan J. M.. ( 2006;). Electricity-producing bacterial communities in microbial fuel cells. . Trends Microbiol 14:, 512–518. [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218, IN1. [CrossRef]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+ C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  19. Oyaizu-Masuchi Y., Komagata K.. ( 1988;). Isolation of free-living nitrogen-fixing bacteria from the rhizosphere of rice. . J Gen Appl Microbiol 34:, 127–164. [CrossRef]
    [Google Scholar]
  20. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  21. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  22. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  24. Urwin R., Maiden M. C.. ( 2003;). Multi-locus sequence typing: a tool for global epidemiology. . Trends Microbiol 11:, 479–487. [CrossRef][PubMed]
    [Google Scholar]
  25. Whistance G. R., Dillon J. F., Threlfall D. R.. ( 1969;). The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria. . Biochem J 111:, 461–472.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058826-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058826-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error