1887

Abstract

A bacterial strain, ABC02-12, was isolated from spent mushroom compost, a waste product of button mushroom cultivation. Cells of the strain were Gram-stain-negative, catalase- and oxidase-positive, non-spore-forming, aerobic flagellated rods. Optimum growth occurred at 28 °C and pH 7.0. 16S rRNA gene sequence analysis showed that strain ABC02-12 shared the highest sequence similarities with CCUG 53761A (96.0 %), subsp. G (95.7 %), subsp. IAM 12369 (95.4 %) and BN9 (95.3 %). According to the phylogenetic tree, strain ABC02-12 formed a robust cluster with CCUG 53761A and KBL009. The quinone system was ubiquinone Q-8 with minor amounts of Q-7. The major fatty acids (>5 % of total fatty acids) were C, Cω6 and/or Cω7 (summed feature 3), Cω7 and/or Cω6 (summed feature 8), C cyclo, and iso-C I, C 3-OH and/or an unknown fatty acid (summed feature 2). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unknown aminolipid. Putrescine was the principal polyamine, with small amounts of 2-hydroxyputrescine and cadaverine. On the basis of the evidence presented in this study, strain ABC02-12 is a representative of a novel species within the genus , for which the name sp. nov. is proposed. The type strain is ABC02-12 ( = KACC 16537 = NBRC 108927).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058412-0
2014-03-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/3/882.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058412-0&mimeType=html&fmt=ahah

References

  1. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  2. Busse J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. . Syst Appl Microbiol 11:, 1–8. [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hamana K., Takeuchi M.. ( 1998;). Polyamine profiles as chemotaxonomic markers within alpha, beta, gamma, delta, and epsilon subclass of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. . Microbiol Cult Collect 14:, 1–14. (In Japanese).
    [Google Scholar]
  7. Hamana K., Saito T., Okada M.. ( 2000;). Polyamine profiles within the beta subclass of the class Proteobacteria: distribution of 2-hydroxyputrescine. . Microbiol Cult Collect 16:, 63–69.
    [Google Scholar]
  8. Hamana K., Sato W., Gouma K., Yu J., Ino Y., Umemura Y., Mochizuki C., Takatsuka K., Kigure Y.. & other authors ( 2007;). Cellular polyamine catalogues of the five classes of the phylum Proteobacteria: distributions of homospermidine within the class Alphaproteobacteria, hydroxyputrescine within the class Betaproteobacteria, norspermidine within the class Gammaproteobacteria, and spermidine within the classes Deltaproteobacteria and Epsilonproteobacteria. . Ann Gunma Health Sci 27:, 1–16.
    [Google Scholar]
  9. Kämpfer P., Falsen E., Langer S., Lodders N., Busse H.-J.. ( 2010;). Paenalcaligenes hominis gen. nov., sp. nov., a new member of the family Alcaligenaceae. . Int J Syst Evol Microbiol 60:, 1537–1542. [CrossRef][PubMed]
    [Google Scholar]
  10. Kim S. J., Yoo S. H., Weon H. Y., Kim Y. S., Anandham R., Suh J. S., Kwon S. W.. ( 2011;). Paralcaligenes ureilyticus gen. nov., sp. nov. isolated from soil of a Korean ginseng field. . J Microbiol 49:, 502–507. [CrossRef][PubMed]
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  12. Lee M., Woo S. G., Chae M., Ten L. N.. ( 2010a;). Pusillimonas soli sp. nov., isolated from farm soil. . Int J Syst Evol Microbiol 60:, 2326–2330. [CrossRef][PubMed]
    [Google Scholar]
  13. Lee M., Jung H. M., Woo S. G., Yoo S. A., Ten L. N.. ( 2010b;). Castellaniella daejeonensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 60:, 2056–2060. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee Y. Y., Lee J. K., Park K. H., Kim S. Y., Roh S. W., Lee S. B., Choi Y., Lee S. J.. ( 2013;). Paenalcaligenes hermetiae sp. nov., isolated from the larval gut of Hermetia illucens (Diptera: Stratiomyidae), and emended description of the genus Paenalcaligenes. . Int J Syst Evol Microbiol 63:, 4224–4229. [CrossRef][PubMed]
    [Google Scholar]
  15. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  16. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  17. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Srinivasan S., Kim M. K., Sathiyaraj G., Kim Y. J., Yang D. C.. ( 2010;). Pusillimonas ginsengisoli sp. nov., isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 60:, 1783–1787. [CrossRef][PubMed]
    [Google Scholar]
  20. Stolz A., Bürger S., Kuhm A., Kämpfer P., Busse H. J.. ( 2005;). Pusillimonas noertemannii gen. nov., sp. nov., a new member of the family Alcaligenaceae that degrades substituted salicylates. . Int J Syst Evol Microbiol 55:, 1077–1081. [CrossRef][PubMed]
    [Google Scholar]
  21. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  22. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058412-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058412-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error