1887

Abstract

Five acetic acid bacteria isolates, awK9_3, awK9_4 ( = LMG 27543), awK9_5 ( = LMG 28092), awK9_6 and awK9_9, obtained during a study of micro-organisms present in traditionally produced kefir, were grouped on the basis of their MALDI-TOF MS profile with LMG 1530 and LMG 1531, two strains currently classified as members of the genus . Phylogenetic analysis based on nearly complete 16S rRNA gene sequences as well as on concatenated partial sequences of the housekeeping genes , and indicated that these isolates were representatives of a single novel species together with LMG 1530 and LMG 1531 in the genus , with , and as nearest phylogenetic neighbours. Pairwise similarity of 16S rRNA gene sequences between LMG 1531 and the type strains of the above-mentioned species were 99.7 %, 99.1 %, 98.4 % and 98.2 %, respectively. DNA–DNA hybridizations confirmed that status, while amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) data indicated that LMG 1531, LMG 1530, LMG 27543 and LMG 28092 represent at least two different strains of the novel species. The major fatty acid of LMG 1531 and LMG 27543 was Cω7. The major ubiquinone present was Q-9 and the DNA G+C contents of LMG 1531 and LMG 27543 were 58.3 and 56.7 mol%, respectively. The strains were able to grow on -fructose and -sorbitol as a single carbon source. They were also able to grow on yeast extract with 30 % -glucose and on standard medium with pH 3.6 or containing 1 % NaCl. They had a weak ability to produce acid from -arabinose. These features enabled their differentiation from their nearest phylogenetic neighbours. The name sp. nov. is proposed with LMG 1531 ( = NCIMB 8941) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058354-0
2014-07-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/7/2407.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058354-0&mimeType=html&fmt=ahah

References

  1. Andrés-Barrao C., Benagli C., Chappuis M., Ortega Pérez R., Tonolla M., Barja F.. ( 2013;). Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting. . Syst Appl Microbiol 36:, 75–81. [CrossRef][PubMed]
    [Google Scholar]
  2. Anhalt J. P., Fenselau C.. ( 1975;). Identification of bacteria using mass-spectrometry. . Anal Chem 47:, 219–225. [CrossRef]
    [Google Scholar]
  3. Castro C., Cleenwerck I., Trcek J., Zuluaga R., De Vos P., Caro G., Aguirre R., Putaux J. L., Gañán P.. ( 2013;). Gluconacetobacter medellinensis sp. nov., cellulose- and non-cellulose-producing acetic acid bacteria isolated from vinegar. . Int J Syst Evol Microbiol 63:, 1119–1125. [CrossRef][PubMed]
    [Google Scholar]
  4. Claydon M. A., Davey S. N., Edwards-Jones V., Gordon D. B.. ( 1996;). The rapid identification of intact microorganisms using mass spectrometry. . Nat Biotechnol 14:, 1584–1586. [CrossRef][PubMed]
    [Google Scholar]
  5. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef][PubMed]
    [Google Scholar]
  6. Cleenwerck I., Camu N., Engelbeen K., De Winter T., Vandemeulebroecke K., De Vos P., De Vuyst L.. ( 2007;). Acetobacter ghanensis sp. nov., a novel acetic acid bacterium isolated from traditional heap fermentations of Ghanaian cocoa beans. . Int J Syst Evol Microbiol 57:, 1647–1652. [CrossRef][PubMed]
    [Google Scholar]
  7. Cleenwerck I., Gonzalez A., Camu N., Engelbeen K., De Vos P., De Vuyst L.. ( 2008;). Acetobacter fabarum sp. nov., an acetic acid bacterium from a Ghanaian cocoa bean heap fermentation. . Int J Syst Evol Microbiol 58:, 2180–2185. [CrossRef][PubMed]
    [Google Scholar]
  8. Cleenwerck I., De Wachter M., González A., De Vuyst L., De Vos P.. ( 2009;). Differentiation of species of the family Acetobacteraceae by AFLP DNA fingerprinting: Gluconacetobacter kombuchae is a later heterotypic synonym of Gluconacetobacter hansenii. . Int J Syst Evol Microbiol 59:, 1771–1786. [CrossRef][PubMed]
    [Google Scholar]
  9. Cleenwerck I., De Vos P., De Vuyst L.. ( 2010;). Phylogeny and differentiation of species of the genus Gluconacetobacter and related taxa based on multilocus sequence analyses of housekeeping genes and reclassification of Acetobacter xylinus subsp. sucrofermentans as Gluconacetobacter sucrofermentans (Toyosaki et al. 1996) sp. nov., comb. nov.. Int J Syst Evol Microbiol 60:, 2277–2283. [CrossRef][PubMed]
    [Google Scholar]
  10. De Vuyst L., Camu N., De Winter T., Vandemeulebroecke K., Van de Perre V., Vancanneyt M., De Vos P., Cleenwerck I.. ( 2008;). Validation of the (GTG)5-rep-PCR fingerprinting technique for rapid classification and identification of acetic acid bacteria, with a focus on isolates from Ghanaian fermented cocoa beans. . Int J Food Microbiol 125:, 79–90. [CrossRef][PubMed]
    [Google Scholar]
  11. Edgar R. C.. ( 2004;). muscle: a multiple sequence alignment method with reduced time and space complexity. . BMC Bioinformatics 5:, 113. [CrossRef][PubMed]
    [Google Scholar]
  12. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane-filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  13. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J.. ( 1985;). Confidence-limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  15. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  16. Gosselé F.. ( 1982;). Grondige fenotypische studie van de genera Acetobacter, Gluconobacter en Frateuria. Rijksuniversiteit Gent, Ghent, Belgium. .
    [Google Scholar]
  17. Gosselé F., Swings J., Kersters K., Pauwels P., De Ley J.. ( 1983;). Numerical analysis of phenotypic features and protein gel electrophoregrams of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898, 215. . Syst Appl Microbiol 4:, 338–368. [CrossRef][PubMed]
    [Google Scholar]
  18. Iino T., Suzuki R., Tanaka N., Kosako Y., Ohkuma M., Komagata K., Uchimura T.. ( 2012;). Gluconacetobacter kakiaceti sp. nov., an acetic acid bacterium isolated from a traditional Japanese fruit vinegar. . Int J Syst Evol Microbiol 62:, 1465–1469. [CrossRef][PubMed]
    [Google Scholar]
  19. Kersters K., Lisdiyanti P., Komagata K., Swings J.. ( 2006;). The family Acetobacteraceae: the genera Acetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter, and Kozakia. . In The Prokaryotes, pp. 163–200. Edited by Dworkin S. F. M., Rosenberg E., Schleifer K.-H., Stackebrandt E... New York:: Springer;. [CrossRef]
    [Google Scholar]
  20. Krishnamurthy T., Ross P. L.. ( 1996;). Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. . Rapid Commun Mass Spectrom 10:, 1992–1996. [CrossRef][PubMed]
    [Google Scholar]
  21. Lisdiyanti P., Kawasaki H., Seki T., Yamada Y., Uchimura T., Komagata K.. ( 2001;). Identification of Acetobacter strains isolated from Indonesian sources, and proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov.. J Gen Appl Microbiol 47:, 119–131. [CrossRef][PubMed]
    [Google Scholar]
  22. Lisdiyanti P., Katsura K., Potacharoen W., Navarro R. R., Yamada Y., Uchimura T., Komagata K.. ( 2003;). Diversity of acetic acid bacteria in Indonesia, Thailand, and the Philippines. . Microbiol Cult Collect 19:, 91–99.
    [Google Scholar]
  23. Navarro R. R., Uchimura T., Komagata K.. ( 1999;). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. . J Gen Appl Microbiol 45:, 295–300. [CrossRef][PubMed]
    [Google Scholar]
  24. Nei M., Kumar S.. ( 2000;). Molecular Evolution and Phylogenetics. New York:: Oxford University Press;.
    [Google Scholar]
  25. Papalexandratou Z., Cleenwerck I., De Vos P., De Vuyst L.. ( 2009;). (GTG)5-PCR reference framework for acetic acid bacteria. . FEMS Microbiol Lett 301:, 44–49. [CrossRef][PubMed]
    [Google Scholar]
  26. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. ( 2013;). The silva ribosomal RNA gene database project: improved data processing and web-based tools. . Nucleic Acids Res 41: (Database issue), D590–D596. [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H.. & other authors ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. . Appl Environ Microbiol 75:, 7537–7541. [CrossRef][PubMed]
    [Google Scholar]
  29. Shimwell J. L., Carr J. G.. ( 1958;). Old and new cellulose-producing Acetobacter species. . J Inst Brew 64:, 477–484. [CrossRef]
    [Google Scholar]
  30. Snauwaert I., Papalexandratou Z., De Vuyst L., Vandamme P.. ( 2013;). Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. . Int J Syst Evol Microbiol 63:, 1709–1716. [CrossRef][PubMed]
    [Google Scholar]
  31. Spitaels F., Li L., Wieme A., Balzarini T., Cleenwerck I., Van Landschoot A., De Vuyst L., Vandamme P.. ( 2014;). Acetobacter lambici sp. nov., isolated from fermenting lambic beer. . Int J Syst Evol Microbiol 64:, 1083–1089. [CrossRef][PubMed]
    [Google Scholar]
  32. Strohalm M., Kavan D., Novák P., Volný M., Havlícek V.. ( 2010;). mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. . Anal Chem 82:, 4648–4651. [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30:, 2725–2729. [CrossRef][PubMed]
    [Google Scholar]
  34. Tanasupawat S., Kommanee J., Yukphan P., Muramatsu Y., Nakagawa Y., Yamada Y.. ( 2011;). Acetobacter farinalis sp. nov., an acetic acid bacterium in the α-Proteobacteria. . J Gen Appl Microbiol 57:, 159–167. [CrossRef][PubMed]
    [Google Scholar]
  35. Tindall B. J.. ( 1989;). Fully saturated menaquinones in the archaebacterium Pyrobaculum islandicum. . FEMS Microbiol Lett 60:, 251–254. [CrossRef]
    [Google Scholar]
  36. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. ( 2010;). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef][PubMed]
    [Google Scholar]
  37. Vaz-Moreira I., Nobre M. F., Nunes O. C., Manaia C. M.. ( 2007;). Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater. . Int J Syst Evol Microbiol 57:, 1108–1112. [CrossRef][PubMed]
    [Google Scholar]
  38. Wieme A., Cleenwerck I., Van Landschoot A., Vandamme P.. ( 2012;). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici. . Int J Syst Evol Microbiol 62:, 3105–3108. [CrossRef][PubMed]
    [Google Scholar]
  39. Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V.. ( 1990;). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. . Nucleic Acids Res 18:, 6531–6535. [CrossRef][PubMed]
    [Google Scholar]
  40. Yamada Y., Yukphan P.. ( 2008;). Genera and species in acetic acid bacteria. . Int J Food Microbiol 125:, 15–24. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058354-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058354-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error