1887

Abstract

Bacterial strains KIS82-1 and GRS42 were isolated from soil and from sap of , respectively, in the Republic of Korea. Both strains were aerobic, Gram-stain-positive, mesophilic, rod-shaped and motile. Phylogenetically, both strains belonged to the family of the phylum . The 16S rRNA gene sequence of strain KIS82-1 showed the highest similarity to those of RS-15 (97.6 %), MSL-08 (97.2 %) and KSW2-17 (97.0 %), while strain GRS42 showed the highest 16S rRNA gene sequence similarity to RS-15 (98.7 %), CafT13 (98.4 %), E1HC-02 (98.2 %) and 801 (97.3 %). The 16S rRNA gene sequence similarity between GRS42 and KIS82-1 was 97.0 %. Phylogenetic trees indicated that strain GRS42 was firmly grouped into the genus , while strain KIS82-1 did not show a clear affiliation to any genus within the family . Strain KIS82-1 showed type B1β peptidoglycan with 2,4-diamino--butyric acid as the diamino acid. It had MK-11, MK-10 and MK-12 as respiratory quinones, anteiso-C, iso-C and iso-C as major cellular fatty acids and diphosphatidylglycerol, phosphatidylglycerol and an unknown glycolipid as predominant polar lipids. The peptidoglycan of strain GRS42 was of type B2β with -ornithine as the diamino acid. The strain contained MK-8, MK-9 and MK-7 as respiratory quinones, summed feature 8 (Cω6 and/or Cω7) as major cellular fatty acid and diphosphatidylglycerol, phosphatidylglycerol and three unknown glycolipids as predominant polar lipids. Strain GRS42 revealed low DNA–DNA hybridization (<50 % relatedness) with closely related strains. Based on the data obtained in the present polyphasic taxonomic study, we propose that strain KIS82-1 represents a novel genus and species and that strain GRS42 represents a novel species in the family . The genus gen. nov. is proposed, with strain KIS82-1 ( = KACC 15520 = NBRC 108727) as the type strain of the type species, sp. nov. Strain GRS42 ( = KACC 15521 = NBRC 108728) is proposed as the type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058339-0
2014-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/2/572.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058339-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1987;). Current Protocols in Molecular Biology. New York:: Greene/Wiley Interscience;.
    [Google Scholar]
  2. Breznak J. A., Costilow R. N.. ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  3. Cardinale M., Grube M., Berg G.. ( 2011;). Frondihabitans cladoniiphilus sp. nov., an actinobacterium of the family Microbacteriaceae isolated from lichen, and emended description of the genus Frondihabitans. . Int J Syst Evol Microbiol 61:, 3033–3038. [CrossRef][PubMed]
    [Google Scholar]
  4. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. ( 2008;). Frigoribacterium mesophilum sp. nov., a mesophilic actinobacterium isolated from Bigeum Island, Korea. . Int J Syst Evol Microbiol 58:, 1869–1872. [CrossRef][PubMed]
    [Google Scholar]
  5. Dastager S. G., Lee J. C., Ju Y. J., Park D. J., Kim C. J.. ( 2009;). Leifsonia kribbensis sp. nov., isolated from soil. . Int J Syst Evol Microbiol 59:, 18–21. [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  7. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef][PubMed]
    [Google Scholar]
  8. Greene A. C., Euzéby J. P., Tindall B. J., Patel B. K. C.. ( 2009;). Proposal of Frondihabitans gen. nov. to replace the illegitimate genus name Frondicola Zhang et al. 2007. . Int J Syst Evol Microbiol 59:, 447–448. [CrossRef][PubMed]
    [Google Scholar]
  9. Hamada M., Yamamura H., Komukai C., Tamura T., Suzuki K., Hayakawa M.. ( 2012;). Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. . J Antibiot (Tokyo) 65:, 427–431. [CrossRef][PubMed]
    [Google Scholar]
  10. Jang Y. H., Kim S. J., Hamada M., Tamura T., Ahn J. H., Weon H. Y., Suzuki K., Kwon S. W.. ( 2012;). Diaminobutyricimonas aerilata gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an air sample in Korea. . J Microbiol 50:, 1047–1052. [CrossRef][PubMed]
    [Google Scholar]
  11. Jang Y. H., Kim S. J., Tamura T., Hamada M., Weon H. Y., Suzuki K., Kwon S. W., Kim W. G.. ( 2013a;). Lysinimonas soli gen. nov., sp. nov., isolated from soil, and reclassification of Leifsonia kribbensis Dastager et al. 2009 as Lysinimonas kribbensis sp. nov., comb. nov.. Int J Syst Evol Microbiol 63:, 1403–1410. [CrossRef][PubMed]
    [Google Scholar]
  12. Jang G. I., Cho Y., Cho B. C.. ( 2013b;). Pontimonas salivibrio gen. nov., sp. nov., a new member of the family Microbacteriaceae isolated from a seawater reservoir of a solar saltern. . Int J Syst Evol Microbiol 63:, 2124–2131. [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Rainey F. A., Andersson M. A., Nurmiaho Lassila E. L., Ulrych U., Busse H.-J., Weiss N., Mikkola R., Salkinoja-Salonen M.. ( 2000;). Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. . Int J Syst Evol Microbiol 50:, 355–363. [CrossRef][PubMed]
    [Google Scholar]
  14. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  15. Kluge A. G., Farris F. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–32. [CrossRef]
    [Google Scholar]
  16. Lee S. D.. ( 2007;). Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. . Int J Syst Evol Microbiol 57:, 2498–2502. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee S. D.. ( 2010;). Frondihabitans peucedani sp. nov., an actinobacterium isolated from rhizosphere soil, and emended description of the genus Frondihabitans Greene et al. 2009. . Int J Syst Evol Microbiol 60:, 1740–1744. [CrossRef][PubMed]
    [Google Scholar]
  18. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  19. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  20. Park Y.-H., Suzuki K., Yim D. G., Lee K. C., Kim E., Yoon J., Kim S., Kho Y. H., Goodfellow M., Komagata K.. ( 1993;). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. . Antonie van Leeuwenhoek 64:, 307–313. [CrossRef][PubMed]
    [Google Scholar]
  21. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O.. ( 2007;). silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb. . Nucleic Acids Res 35:, 7188–7196. [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  24. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed]
    [Google Scholar]
  25. Schumann P., Zhang D. C., Redzic M., Margesin R.. ( 2012;). Alpinimonas psychrophila gen. nov., sp. nov., an actinobacterium of the family Microbacteriaceae isolated from alpine glacier cryoconite. . Int J Syst Evol Microbiol 62:, 2724–2730. [CrossRef][PubMed]
    [Google Scholar]
  26. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. . Int J Syst Bacteriol 35:, 151–154. [CrossRef]
    [Google Scholar]
  27. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. . Int J Syst Bacteriol 16:, 313–340. [CrossRef]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov.. Int J Syst Bacteriol 47:, 479–491. [CrossRef]
    [Google Scholar]
  30. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  32. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  33. Weon H. Y., Kim S. J., Jang Y. H., Hamada M., Tamura T., Ahn J. H., Suzuki K., Kwon S. W.. ( 2013;). Naasia aerilata gen. nov., sp. nov., a member of the family Microbacteriaceae isolated from air. . Int J Syst Evol Microbiol 63:, 2436–2441 [CrossRef][PubMed]
    [Google Scholar]
  34. Zhang L., Xu Z., Patel B. K. C.. ( 2007;). Frondicola australicus gen. nov., sp. nov., isolated from decaying leaf litter from a pine forest. . Int J Syst Evol Microbiol 57:, 1177–1182. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058339-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058339-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error