1887

Abstract

Two Gram-staining-negative, aerobic, rod-shaped bacterial strains, designated Za6a-12 and Za6a-17, were isolated from seawater of the East China Sea. Cells of Za6a-12 and Za6a-17 were approximately 1.5–2.0 µm×0.5–0.7 µm and motile by a single polar flagellum. Strains grew optimally at pH 7.5-8.0, 28 °C, and in the presence of 2.5–3.0 % (w/v) NaCl. Chemotaxonomic analysis showed that the predominant respiratory quinone of strains Za6a-12 and Za6a-17 was ubiquinone-8 (>97 %), and the major fatty acids were C, Cω7 and/or iso-C 2-OH, C and Cω8. Their DNA G+C contents were 42.7 mol% and 42.8 mol%, respectively. 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus and showed the highest sequence similarity to CBMAI 722 (95.9 %). Strains Za6a-12 and Za6a-17 could be differentiated from CBMAI 722 according to their phenotypic and chemotaxonomic features, DNA G+C contents and fatty acid composition. On the basis of these features, we propose strains Za6a-12 and Za6a-17 to be representatives of a novel species of the genus with the name sp. nov. suggested. Strain Za6a-12 ( = CGMCC 1.12115 = JCM 18482) is the type strain of this novel species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058255-0
2014-06-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/6/2079.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058255-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann R. H., Schubert W.. ( 1984;). Vibrionaceae. . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 516–550. Edited by Krieg N. R., Holt J. G... Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  2. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  3. Dong, X.-Z. & Cai, M.-Y. (2001). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press (English translation).
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef][PubMed]
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Biol 20:, 406–416. [CrossRef]
    [Google Scholar]
  6. Hosoya S., Adachi K., Kasai H.. ( 2009;). Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. . Int J Syst Evol Microbiol 59:, 686–690. [CrossRef][PubMed]
    [Google Scholar]
  7. Huss V. A., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef][PubMed]
    [Google Scholar]
  8. Jean W. D., Shieh W. Y., Liu T. Y.. ( 2006;). Thalassomonas agarivorans sp. nov., a marine agarolytic bacterium isolated from shallow coastal water of An-Ping Harbour, Taiwan, and emended description of the genus Thalassomonas. . Int J Syst Evol Microbiol 56:, 1245–1250. [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H.. & other authors ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef][PubMed]
    [Google Scholar]
  10. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16:, 111–120. [CrossRef][PubMed]
    [Google Scholar]
  11. Komagata K., Suzuki K.. ( 1987;). Lipids and cell-wall analysis a bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  12. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. . J Bacteriol 85:, 1183–1184.[PubMed]
    [Google Scholar]
  13. Macián M. C., Ludwig W., Schleifer K. H., Garay E., Pujalte M. J.. ( 2001;). Thalassomonas viridans gen. nov., sp. nov., a novel marine γ-proteobacterium. . Int J Syst Evol Microbiol 51:, 1283–1289. [CrossRef][PubMed]
    [Google Scholar]
  14. Marmur J., Doty P.. ( 1962;). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  15. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. . J Chromatogr A 479:, 297–306. [CrossRef][PubMed]
    [Google Scholar]
  16. Oppenheimer C. H., ZoBell C. E.. ( 1952;). The growth and viability of 63 species of marine bacteria as influenced by hydrostatic pressure. . J Mar Res 11:, 10–18.
    [Google Scholar]
  17. Park S., Choi W.-C., Oh T.-K., Yoon J.-H.. ( 2011;). Thalassomonas agariperforans sp. nov., an agarolytic bacterium isolated from marine sand. . Int J Syst Evol Microbiol 61:, 2573–2576. [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  20. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  21. Thompson F. L., Barash Y., Sawabe T., Sharon G., Swings J., Rosenberg E.. ( 2006;). Thalassomonas loyana sp. nov., a causative agent of the white plague-like disease of corals on the Eilat coral reef. . Int J Syst Evol Microbiol 56:, 365–368. [CrossRef][PubMed]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E.. & other authors ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  23. Wu X.-Y., Zheng G., Zhang W.-W., Xu X.-W., Wu M., Zhu X.-F.. ( 2010;). Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. . Int J Syst Evol Microbiol 60:, 2540–2543. [CrossRef][PubMed]
    [Google Scholar]
  24. Xu X.-W., Wu Y.-H., Zhou Z., Wang C.-S., Zhou Y.-G., Zhang H.-B., Wang Y., Wu M.. ( 2007;). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. . Int J Syst Evol Microbiol 57:, 1619–1624. [CrossRef][PubMed]
    [Google Scholar]
  25. Yi H., Bae K. S., Chun J.. ( 2004;). Thalassomonas ganghwensis sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 54:, 377–380. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058255-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058255-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error