1887

Abstract

Two novel bacterial strains, GH2-4 and GH2-5, were isolated from mangrove soil near the seashore of Weno island in Chuuk state, Micronesia, and were characterized by a polyphasic approach. The two strains were strictly aerobic, Gram-staining-positive, motile, endospore-forming rods that were catalase- and oxidase-positive. Colonies were circular, convex, stringy and transparent yellowish (GH2-4) or opaque whitish (GH2-5). The 16S rRNA gene sequences of the two isolates were identical. The most closely related strains in terms of 16S rRNA gene sequence similarity were WCC 4582, DSM 23495, LMG 9581, DSM 6307 and DSM 8723 (95.6, 95.4, 95.4, 95.2 and 95.2 % similarity, respectively). The partial sequence of strain GH2-4 was identical to that of strain GH2-5 and showed <85 % similarity to those of the most closely related strains. The isolates grew at pH 5–12 (optimal growth at pH 9), at 10–40 °C (optimum 30–35 °C) and at 0–9 % (w/v) NaCl (optimum 1–3 % NaCl). The cell-wall peptidoglycan of strains GH2-4 and GH2-5 contained -diaminopimelic acid and cell-wall hydrolysates contained ribose as a major sugar. The DNA G+C content was 36 mol%, and DNA–DNA relatedness between the isolates and five related reference strains was 20–24 %. Strain GH2-4 exhibited 81 % DNA–DNA relatedness with strain GH2-5. The major cellular fatty acids of both strains were iso-C, iso-C, iso-C and anteiso-C and the predominant menaquinone was MK-7. On the basis of the evidence from this polyphasic study, strains GH2-4 and GH2-5 ( = KCTC 33143 = JCM 18995 = DSM 27084) represent a novel species of the genus , for which the name sp. nov. is proposed; the type strain is GH2-4 ( = KCTC 33142 = JCM 18994 = DSM 27083).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058230-0
2014-05-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1622.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058230-0&mimeType=html&fmt=ahah

References

  1. Alongi D. M.. ( 1988;). Bacterial productivity and microbial biomass in tropical mangrove sediments. . Microb Ecol 15:, 59–79. [CrossRef][PubMed]
    [Google Scholar]
  2. Becker B., Lechevalier M. P., Lechevalier H. A.. ( 1965;). Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. . Appl Microbiol 13:, 236–243.[PubMed]
    [Google Scholar]
  3. Benson D., Lipman D. J., Ostell J.. ( 1993;). GenBank. . Nucleic Acids Res 21:, 2963–2965. [CrossRef][PubMed]
    [Google Scholar]
  4. Bruns A., Rohde M., Berthe-Corti L.. ( 2001;). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. . Int J Syst Evol Microbiol 51:, 1997–2006. [CrossRef][PubMed]
    [Google Scholar]
  5. Euzéby J. P.. ( 2010;). Bacillus Cohn 1872, genus. . In List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.net/bacillus.html
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  8. Goh S. H., Potter S., Wood J. O., Hemmingsen S. M., Reynolds R. P., Chow A. W.. ( 1996;). HSP60 gene sequences as universal targets for microbial species identification: studies with coagulase-negative staphylococci. . J Clin Microbiol 34:, 818–823.[PubMed]
    [Google Scholar]
  9. Holguin G., Vazquez P., Bashan Y.. ( 2001;). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. . Biol Fertil Soils 33:, 265–278. [CrossRef]
    [Google Scholar]
  10. Holguin G., Gonzalez-Zamorano P., de-Bashan L. E., Mendoza R., Amador E., Bashan Y.. ( 2006;). Mangrove health in an arid environment encroached by urban development – a case study. . Sci Total Environ 363:, 260–274. [CrossRef][PubMed]
    [Google Scholar]
  11. Huang H., Lv J., Hu Y., Fang Z., Zhang K., Bao S.. ( 2008;). Micromonospora rifamycinica sp. nov., a novel actinomycete from mangrove sediment. . Int J Syst Evol Microbiol 58:, 17–20. [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P.. ( 1994;). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. . Syst Appl Microbiol 17:, 86–98. [CrossRef]
    [Google Scholar]
  13. Kathiresan K., Bingham B. L.. ( 2001;). Biology of mangroves and mangrove ecosystems. . Adv Mar Biol 40:, 81–251. [CrossRef]
    [Google Scholar]
  14. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  15. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R.. ( 1985;). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. . Proc Natl Acad Sci U S A 82:, 6955–6959. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee J. H., Kumar S., Lee G. H., Chang D. H., Rhee M. S., Yoon M. H., Kim B. C.. ( 2013;). Methanobrevibacter boviskoreani sp. nov., isolated from the rumen of Korean native cattle. . Int J Syst Evol Microbiol 63:, 4196–4201. [CrossRef][PubMed]
    [Google Scholar]
  17. Limtong S., Yongmanitchai W., Kawasaki H., Seki T.. ( 2007;). Candida thaimueangensis sp. nov., an anamorphic yeast species from estuarine water in a mangrove forest in Thailand. . Int J Syst Evol Microbiol 57:, 650–653. [CrossRef][PubMed]
    [Google Scholar]
  18. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L.. & other authors ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef][PubMed]
    [Google Scholar]
  19. Louws F. J., Fulbright D. W., Stephens C. T., de Bruijn F. J.. ( 1994;). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. . Appl Environ Microbiol 60:, 2286–2295.[PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  21. Nakagawa Y., Yamasato K.. ( 1993;). Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. . J Gen Microbiol 139:, 1155–1161. [CrossRef][PubMed]
    [Google Scholar]
  22. Nam Y.-D., Chang H.-W., Park J. R., Kwon H.-Y., Quan Z.-X., Park Y.-H., Lee J.-S., Yoon J.-H., Bae J.-W.. ( 2007;). Pseudoalteromonas marina sp. nov., a marine bacterium isolated from tidal flats of the Yellow Sea, and reclassification of Pseudoalteromonas sagamiensis as Algicola sagamiensis comb. nov.. Int J Syst Evol Microbiol 57:, 12–18. [CrossRef][PubMed]
    [Google Scholar]
  23. Nielsen P., Fritze D., Priest F. G.. ( 1995;). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. . Microbiology 141:, 1745–1761. [CrossRef]
    [Google Scholar]
  24. Priest F. G., Goodfellow M., Todd C.. ( 1988;). A numerical classification of the genus Bacillus. . J Gen Microbiol 134:, 1847–1882.[PubMed]
    [Google Scholar]
  25. Rameshkumar N., Fukui Y., Sawabe T., Nair S.. ( 2008;). Vibrio porteresiae sp. nov., a diazotrophic bacterium isolated from a mangrove-associated wild rice (Porteresia coarctata Tateoka). . Int J Syst Evol Microbiol 58:, 1608–1615. [CrossRef][PubMed]
    [Google Scholar]
  26. Rhuland L. E., Work E., Denman R., Hoare D.. ( 1955;). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. . J Am Chem Soc 77:, 4844–4846. [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  28. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Spanka R., Fritze D.. ( 1993;). Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. . Int J Syst Bacteriol 43:, 150–156. [CrossRef][PubMed]
    [Google Scholar]
  30. Takeuchi M., Hatano K.. ( 2001;). Agromyces luteolus sp. nov., Agromyces rhizospherae sp. nov. and Agromyces bracchium sp. nov., from the mangrove rhizosphere. . Int J Syst Evol Microbiol 51:, 1529–1537.[PubMed]
    [Google Scholar]
  31. Tamura K., Dudley J., Nei M., Kumar S.. ( 2007;). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. ( 1990a;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. . Syst Appl Microbiol 13:, 128–130. [CrossRef]
    [Google Scholar]
  34. Tindall B. J.. ( 1990b;). Lipid composition of Halobacterium lacusprofundi. . FEMS Microbiol Lett 66:, 199–202. [CrossRef]
    [Google Scholar]
  35. Ventosa A., Nieto J. J., Oren A.. ( 1998;). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
  36. Wieser M., Busse H.-J.. ( 2000;). Rapid identification of Staphylococcus epidermidis. . Int J Syst Evol Microbiol 50:, 1087–1093. [CrossRef][PubMed]
    [Google Scholar]
  37. Xu J., Wang Y., Xie S. J., Xu J., Xiao J., Ruan J. S.. ( 2009;). Streptomyces xiamenensis sp. nov., isolated from mangrove sediment. . Int J Syst Evol Microbiol 59:, 472–476. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhou Y., Xu J., Xu L., Tindall B. J.. ( 2009;). Falsibacillus pallidus to replace the homonym Bacillus pallidus Zhou et al. 2008. . Int J Syst Evol Microbiol 59:, 3176–3180. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058230-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058230-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error