sp. nov., a marine bacterium isolated from deep-sea sediment, and emended description of the genus Free

Abstract

A Gram-stain-negative, aerobic, oxidase- and catalase-positive, flagellated, rod-shaped bacterial strain, designated SM1222, was isolated from the deep-sea sediment of the South China Sea. The strain grew at 4–35 °C and with 0.5–8 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequences revealed that strain SM1222 was affiliated with the genus in the class . It shared the highest sequence similarity with the type strain of (96.8 %) and 95.4–96.6 % sequence similarities with type strains of other species of the genus with validly published names. Strain SM1222 contained summed feature 3 (Cω7 and/or iso-C 2-OH), Cω7, C, C and summed feature 2 (C 3-OH and/or iso-C I) as the major fatty acids and ubiquinone Q-8 as the predominant respiratory quinone. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The genomic DNA G+C content of strain SM1222 was 51.5 mol%. On the basis of the evidence presented in this study, strain SM1222 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of is SM1222 ( = CCTCC AB 2013241 = KCTC 32510). An emended description of the genus Romanenko 2003 emend. Choi 2011 is also proposed.

Funding
This study was supported by the:
  • National Natural Science Foundation of China (Award Hi-Tech Research and Development Program of China, 31025001, 31290231, 31270117, 81271896, 31170055, 2011AA090703, 2012AA092103, 91228210, 31270064 and 2012AA092105)
  • China Ocean Mineral Resources R & D Association (COMRA) Special Foundation (Award DY125-15-R-03 and DY125-15-T-05)
  • Special Fund of China for Marine-Scientific Research in the Public Interest (Award 201005032-6)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058115-0
2014-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/4/1252.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058115-0&mimeType=html&fmt=ahah

References

  1. Choi W. C., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H. ( 2011 ). Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Oceanisphaera Romanenko et al. 2003. . Int J Syst Evol Microbiol 61, 28802884. [View Article] [PubMed]
    [Google Scholar]
  2. Felsenstein J. ( 1981 ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17, 368376. [View Article] [PubMed]
    [Google Scholar]
  3. Felsenstein J. ( 1985 ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39, 783791. [View Article]
    [Google Scholar]
  4. Fitch W. M. ( 1971 ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20, 406416. [View Article]
    [Google Scholar]
  5. Komagata K., Suzuki K. ( 1987 ). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19, 161207.
    [Google Scholar]
  6. Lane D. J. ( 1991 ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115175. Edited by Stackebrandt E., Goodfellow M. . Chichester:: Wiley;.
    [Google Scholar]
  7. Marmur J. ( 1961 ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3, 208218. [View Article]
    [Google Scholar]
  8. Marmur J., Doty P. ( 1962 ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5, 109118. [View Article] [PubMed]
    [Google Scholar]
  9. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994 ). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 2141. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  10. Park S. J., Kang C. H., Nam Y. D., Bae J. W., Park Y. H., Quan Z. X., Moon D. S., Kim H. J., Roh D. H., Rhee S. K. ( 2006 ). Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. . Int J Syst Evol Microbiol 56, 895898. [View Article] [PubMed]
    [Google Scholar]
  11. Romanenko L. A., Schumann P., Zhukova N. V., Rohde M., Mikhailov V. V., Stackebrandt E. ( 2003 ). Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. . Int J Syst Evol Microbiol 53, 18851888. [View Article] [PubMed]
    [Google Scholar]
  12. Saitou N., Nei M. ( 1987 ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4, 406425.[PubMed]
    [Google Scholar]
  13. Shieh W. Y., Lin Y. T., Jean W. D. ( 2004 ). Pseudovibrio denitrificans gen. nov., sp. nov., a marine, facultatively anaerobic, fermentative bacterium capable of denitrification. . Int J Syst Evol Microbiol 54, 23072312. [View Article] [PubMed]
    [Google Scholar]
  14. Shin N.-R., Whon T. W., Roh S. W., Kim M.-S., Kim Y. O., Bae J. W. ( 2012 ). Oceanisphaera sediminis sp. nov., isolated from marine sediment. . Int J Syst Evol Microbiol 62, 15521557. [View Article] [PubMed]
    [Google Scholar]
  15. Smibert R. M., Krieg N. R. ( 1994 ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011 ). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28, 27312739. [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058115-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058115-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed