1887

Abstract

A yellow Gram-reaction-positive bacterium isolated from bean seeds ( L.) was identified as by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982 did not represent any known subspecies of . Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982 is regarded as representing a novel subspecies for which the name subsp. subsp. nov. is proposed. The type strain is LPPA 982 ( = CECT 8144 = LMG 27667).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.058099-0
2014-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/64/5/1752.html?itemId=/content/journal/ijsem/10.1099/ijs.0.058099-0&mimeType=html&fmt=ahah

References

  1. Davis M. J., Gillaspie A. G., Vidaver A. K., Harris R. W.. ( 1984;). Clavibacter a new genus containing some phytopathogenic coryneform bacteria, including Clavibacter xyli subsp. xyli sp. nov., subsp. nov. & Clavibacter xyli subsp. cynodontis subsp. nov., pathogens that cause ratoon stunting disease of sugarcane and bermudagrass stunting disease. . Int J Syst Bacteriol 34:, 107–117. [CrossRef]
    [Google Scholar]
  2. Dye D. W., Kemp W. J.. ( 1977;). A taxonomic study of plant pathogenic Corynebacterium species. . N Z J Agric Res 20:, 563–582. [CrossRef]
    [Google Scholar]
  3. Eichenlaub R., Gartemann K.-H., Burger A.. ( 2006;). Clavibacter michiganensis, a group of Gram-positive phytopathogenic bacteria. . In Plant-Associated Bacteria, pp. 385–421. Edited by Gnanamanickan S. S.. Dordrecht:: Springer;. [CrossRef]
    [Google Scholar]
  4. Francis I., Holsters M., Vereecke D.. ( 2010;). The Gram-positive side of plant–microbe interactions. . Environ Microbiol 12:, 1–12. [CrossRef][PubMed]
    [Google Scholar]
  5. González A. J., Tello J. C., Rodicio M. R.. ( 2005;). Bacterial wilt of beans (Phaseolus vulgaris) caused by Curtobacterium flaccumfaciens in Southeastern Spain. . Plant Dis 89:, 1361. [CrossRef]
    [Google Scholar]
  6. Goszczynska T., Serfontein J.. ( 1998;). Milk-Tween agar, a semiselective medium for isolation and differentiation of Pseudomonas syringae pv. syringae. Pseudomonas syringae pv. phaseolicola and Xanthomonas axonopodis pv. phaseoli. . J Microbiol Methods 32:, 65–72. [CrossRef]
    [Google Scholar]
  7. Hugh R., Leifson E.. ( 1953;). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. . J Bacteriol 66:, 24–26.[PubMed]
    [Google Scholar]
  8. Jahr H., Bahro R., Burger A., Ahlemeyer J., Eichenlaub R.. ( 1999;). Interactions between Clavibacter michiganensis and its host plants. . Environ Microbiol 1:, 113–118. [CrossRef][PubMed]
    [Google Scholar]
  9. King E. O., Ward M. K., Raney D. E.. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. . J Lab Clin Med 44:, 301–307.[PubMed]
    [Google Scholar]
  10. Lee I. M., Bartoszyk I. M., Gundersen-Rindal D. E., Davis R. E.. ( 1997;). Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16S rRNA gene sequence analyses. . Appl Environ Microbiol 63:, 2631–2636.[PubMed]
    [Google Scholar]
  11. Metzler M. C., Laine M. J., de Boer S. H.. ( 1997;). The status of molecular biological research on the plant pathogenic genus Clavibacter. . FEMS Microbiol Lett 150:, 1–8. [CrossRef]
    [Google Scholar]
  12. Milijašević-Marčić S., Gatermann K.-H., Frohwitter J., Eichenlaub R., Todorović B., Rekanović E., Potočnik I.. ( 2012;). Characterization of Clavibacter michiganensis subsp. michiganensis strains from recent outbreaks of bacterial wilt and canker in Serbia. . Eur J Plant Pathol 134:, 697–711. [CrossRef]
    [Google Scholar]
  13. Noval C.. ( 1991;). Medios de cultivo y pruebas de diagnóstico. . In Manual de Laboratorio. Diagnóstico de Hongos, Bacterias y Nematodos Fitopatógenos, pp. 379–410. Ministerio de Agricultura, Pesca y Alimentació. Madrid.
    [Google Scholar]
  14. Palomo J. L., López M. M., García-Benavides P., Velázquez E., Martínez-Molina E.. ( 2006;). Evaluation of the API 50CH and API ZYM systems for rapid characterization of Clavibacter michiganensis subsp. sepedonicus, causal agent of potato ring rot. . Eur J Plant Pathol 115:, 443–451. [CrossRef]
    [Google Scholar]
  15. Pastrik K. H., Rainey F. A.. ( 1999;). Identification and differentiation of Clavibacter michiganensis subspecies by polymerase chain reaction-based techniques. . J Phytopathol 147:, 687–693. [CrossRef]
    [Google Scholar]
  16. Richert K., Brambilla E., Stackebrandt E.. ( 2005;). Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. . J Microbiol Methods 60:, 115–123. [CrossRef][PubMed]
    [Google Scholar]
  17. Ryu E.. ( 1938;). On the Gram-differentiation of bacteria by the simplest method. . J Jpn Soc Vet Sci 17:, 205–207. [CrossRef]
    [Google Scholar]
  18. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  19. Thompson J. D., Higgins D. G., Gibson T. J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22:, 4673–4680. [CrossRef][PubMed]
    [Google Scholar]
  20. Thornley M. J.. ( 1960;). The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. . J Appl Bacteriol 23:, 37–52. [CrossRef]
    [Google Scholar]
  21. Trapiello E., González A. J.. ( 2012;). Diversity of culturable bacteria and occurrence of phytopathogenic species in bean seeds (Phaseolus vulgaris L.) preserved in a germplasm bank. . Genet Resour Crop Evol 59:, 1597–1603. [CrossRef]
    [Google Scholar]
  22. Tsiantos J.. ( 1987;). Transmission of bacterium Corynebacterium michiganense pv. michiganense by seeds. . J Phytopathol 119:, 142–146. [CrossRef]
    [Google Scholar]
  23. Vidaver A. K., Davis M. J.. ( 1988;). Coryneform plant pathogens. . In Laboratory Guide for Identification of Plant Pathogenic Bacteria, , 2nd edn., pp. 104–113. Edited by Schaad N. W... St. Paul, MN:: The American Phytopathological Society;.
    [Google Scholar]
  24. Waleron M., Waleron K., Kamasa J., Przewodowski W., Lojkowska E.. ( 2011;). Polymorphism analysis of housekeeping genes for identification and differentiation of Clavibacter michiganensis subspecies. . Eur J Plant Pathol 131:, 341–354. [CrossRef]
    [Google Scholar]
  25. Zaluga J., Van Vaerenbergh J., Stragier P., Maes M., De Vos P.. ( 2013;). Genetic diversity of non-pathogenic Clavibacter strains isolated from tomato seeds. . Syst Appl Microbiol 36:, 426–435. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.058099-0
Loading
/content/journal/ijsem/10.1099/ijs.0.058099-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error